1. Find the value of $20 \times\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{10}\right)^{-1}$ ?

Solution: $20 \times\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{10}\right)^{-1}=20 \times\left(\frac{5+2+1}{10}\right)^{-1}=20 \times\left(\frac{10}{8}\right)=25$ Ans. 25.
2. Sum of five consecutive natural numbers is 35 . Find the sum of next five consecutive natural numbers.
Solution: Each of the next five numbers is five more than the corresponding number of the first five. For example, if the first five numbers are $7,8,9,10,11$ then the next five numbers are $12,13,14,15,16$. Now $12-7=5,13-8=5$, etc. Which means the sum will increase by $5 \times 5$. Ans. 60 .
3. Find the smallest natural number to be added to 2023 so that we get a perfect square.
Solution: Clearly, the nearest square is $2025=45^{2}$. Ans. 2 .
4. Points $A, B, C$, and $D$ are on a line in that order. The distance from $A$ to $D$ is 24 . The distance from $B$ to $D$ is 3 times the distance from $A$ to $B$. Point $C$ is halfway between $B$ and $D$. What is the distance from $A$ to $C$ ?
Solution: If distance between $A$ and $B$ is $x$ then $B D=3 x$ and $A D=24 \Rightarrow 4 x=24$ $\Rightarrow x=6$. So, $B D=18, B C=9 \Rightarrow A C=6+9=15$ Ans. 15 .
5. In the diagram, $A B C F$ is a rectangle with $A B=30$ and $A F=14$. Points $E$ and $D$ are on $F C$ so that $F E=5$ and the area of quadrilateral $A B D E$ is 266 . The length of $D C$ is


Solution: $\operatorname{Area}(\square A B C D)=A B \times A F=420$. $\operatorname{Area}(\triangle A F E)=\frac{1}{2} A F \times F E=$ $\frac{1}{2} 14 \times 5=35$. So, $\operatorname{Area}(\triangle B D C)=420-266-35=129 \Rightarrow \frac{1}{2} 14 \times D C=119 \Rightarrow$ $D C=17$ Ans. 17 .
6. The average of $a, b$ and $c$ is 16 . The average of $c, d$ and $e$ is 26 . The average of $a, b, c, d$, and $e$ is 20 . The value of $c$ is
Solution: Sum of $a, b, c=3 \times 16=48$, sum of $c, d, e=3 \times 26=78$ and sum of $a, b, c, d, e=5 \times 20=100$ so, $c=78+48-100=26$ Ans. 26.
7. A positive number is increased by $25 \%$. By what percentage should the result be decreased to return to the original value?
Solution: Suppose the original number is 100 , so it becomes 125 . Now 125 is decreased by 25 which is $\frac{25}{125} \times 100=20 \%$ Ans. 20 .
8. Points $A, B, C, D, E$, and $F$ are evenly spaced around the circle with centre $O$, as shown. The measure of $\angle A C O$ is


Solution: Since the circle is divided in six equal parts, we have $m \angle A O C=120^{\circ}$. $\triangle A O C$ is isoceles, so its base angle is $\frac{180-120}{2}=30^{\circ}$ Ans. 30.
9. A rectangle has positive integer side lengths and an area of 24 . The perimeter of the rectangle cannot be
(If your answer is 20 , mark 20 as your answer. If your answer is 28 , mark 28 as your answer, etc.)
(A) 20
(B) 22
(C) 28
(D) 50
(E) 36

Solution: The possible sides and perimeters are given in the following table:

| Side 1 | Side 2 | Perimeter |
| :---: | :---: | :---: |
| 1 | 24 | 50 |
| 2 | 12 | 28 |
| 3 | 8 | 22 |
| 4 | 6 | 20 |

Ans. 36.
10. The operation $a \nabla b$ is defined by $a \nabla b=\frac{a+b}{a-b}$ for all integers $a$ and $b$ with $a \neq b$. For example, $2 \nabla 3=\frac{2+3}{2-3}=-5$. If $3 \nabla b=-4$, what is the value of $b$ ?
Solution: $3 \nabla b=-4 \Rightarrow \frac{3+b}{3-b}=-4 \Rightarrow 3+b=-12+4 b \Rightarrow 3 b=15 \Rightarrow b=5$
Ans. 5.
11. If $x$ is $20 \%$ of $y$ and $x$ is $50 \%$ of $z$, then what percentage is $z$ of $y$ ?

Solution: $y=5 x$ and $z=2 x \Rightarrow z=\frac{2}{5} y$ Ans. 40.
12. In the diagram, pentagon TPSRQ is constructed from equilateral $\triangle P T Q$ and square $P Q R S$. The measure of $\angle S T R$ is equal to
Solution: In $\triangle T P S, T P=S P$ and $\angle T P S=90+60=150^{\circ}$, so $\angle P T S=\frac{180-150}{2}=15$. Similarly $\angle Q T R=15$. Because $\triangle P Q T$ is equilateral, $\angle P T Q=60^{\circ}$, so $\angle S T R=60^{\circ}-15-15=30^{\circ}$ Ans. 30 .

13. In the diagram, $P Q R$ is a straight line segment. If $x+y=76$, what is the value of $x$ ?
Solution: $x+y+x+y+x=180 \Rightarrow x+2(x+y)=$ $180 \Rightarrow x+2(76)=180 \Rightarrow x=28^{\circ}$ Ans. 28.

14. If $3^{x}=5$, the value of $3^{x+2}$ is

Solution: $3^{x+2}=\left(3^{x}\right)\left(3^{2}\right)=\left(3^{x}\right)(9)=45$ Ans. 45.
15. A group of friends are sharing a bag of candy. On the first day, they eat $\frac{1}{2}$ of the candies in the bag. On the second day, they eat $\frac{2}{3}$ of the remaining candies. On the third day, they eat $\frac{3}{4}$ of the remaining candies. At the end of the third day, there is 1 candy remaining in the bag. How many candies were in the bag before the first day?
Solution: At the end of day $1, \frac{1}{2}$ of candies remaining. On second day, $\frac{2}{3}$ of these are eaten and $\frac{1}{3}$ remain, i.e. $\frac{1}{3}$ of $\frac{1}{2}$ remain, i.e. $\frac{1}{6}$ remain. On day $3, \frac{3}{4}$ of $\frac{1}{6}$ eaten, so $\frac{1}{4}$ of $\frac{1}{6}$ remain, i.e. $\frac{1}{24}$ candies remaining. This is one candy. So, total candies $=24$. Ans. 24.
16. The variables $a, b, c, d, e$, and $f$ represent the numbers $4,12,15,27,31$, and 39 in some order. Suppose that

$$
\begin{aligned}
& a+b=c \\
& b+c=d \\
& c+e=f
\end{aligned}
$$

The value of $a+c+f$ is
Solution: The pairs required are $12+15=27,4+27=31$ and $27+12=39$. Of these, the number appearing thrice is $c$, so, $c=27$. Number appearing twice is $b=12$. So,
$a+b=c--->15+12=27$
$b+c=d--->12+27=39$
$c+e=f--->27+4=31 \Rightarrow a=15, b=12, c=27, d=39, e=4, f=31$
Ans. 73.
17. In the diagram, pentagon $P Q R S T$ has $P Q=13, Q R=18, S T=30$, and area of the pentagon $P Q R S T$ is 270 .. Also, $\angle Q R S=\angle R S T=\angle S T P=90^{\circ}$. Find the perimeter of $P Q R S T$.

18. Simplify and find $\frac{\frac{3168}{13}}{3-\frac{7}{13}}=$

Solution: $\frac{\frac{3168}{13}}{3-\frac{7}{13}}=\frac{\frac{3168}{13}}{\frac{39-7}{13}}=\frac{\frac{3168}{13}}{\frac{32}{13}}=\frac{3168}{13} \times \frac{13}{32}=\frac{3168}{32}=99$ Ans. 99.
19. Find the sum of all natural numbers between $\sqrt{37}$ and $\sqrt{120}$.

Solution: $36<37<49 \Rightarrow 6<\sqrt{37}<7$ and $100<120<121 \Rightarrow 10<\sqrt{120}<11$, so the natural numbers between $\sqrt{37}$ and $\sqrt{120}$ are $7,8,9,10$ Ans. 34 .
20. $\frac{\sqrt{507}+\sqrt{845}+\sqrt{1183}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}=$.

Solution: $\frac{\sqrt{507}+\sqrt{845}+\sqrt{1183}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}=\frac{\sqrt{169 \times 3}+\sqrt{169 \times 5}+\sqrt{169 \times 7}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}$
$=13\left(\frac{\sqrt{3}+\sqrt{5}+\sqrt{7}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\right)=13$ Ans. 13.
Key:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 60 | 2 | 15 | 17 | 26 | 20 | 30 | 36 | 5 |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 40 | 30 | 28 | 45 | 24 | 73 | 82 | 99 | 34 | 13 |

