1. What will be the digit in hundreds place if 11 numbers in series $3,33,333,3333, \ldots$ are added?

Solution: Since we are interested in the digit at hundred's place, we can take only last three digits of all numbers. So, we need to calculate $(3+33)+(333+333+\cdots+333)$ here, 333 appears 9 times. So, we need to calculate $3+33+9 \times 333=36+2997=3033$. So, the answer is 0 .
2. Find the value of $\frac{0.36 \times 0.27 \times 0.001}{0.06 \times 0.03 \times 0.1 \times 0.2}=$

Solution: Let's first remove the decimal points.
$\frac{0.36 \times 0.27 \times 0.001}{0.06 \times 0.03 \times 0.1 \times 0.2}=\frac{(0.36)(100) \times(0.27)(100) \times(0.001)(1000)}{(0.06)(100) \times(0.03)(100) \times(0.1)(10) \times(0.2)(10) \times 10}$
$=\frac{36 \times 27}{6 \times 3 \times 2 \times 10}=2.7$
3. $x \%$ of $y \%$ of $z \%$ of $8000=40 \%$ of $y \%$ of z. Find $x \%$ of 1800 .

Solution: We have $\frac{x}{100} \times \frac{y}{100} \times \frac{z}{100} \times 8000=\frac{40}{100} \times \frac{y}{100} \times z \Rightarrow x=0.5$. So, 0.5% of $1800=\frac{0.5}{100} \times 1800=9$.
4. $\sqrt{200}$ lies between consecutive natural numbers m and $m+1 . \sqrt{300}$ lies between consecutive natural numbers n and $n+1 . \sqrt{500}$ lies between consecutive natural numbers k and $k+1$. Find $m+n+k$.

Solution: $196<200<225$, i.e. $14^{2}<200<15^{2}$, so $m=14$.
$289<300<324$, i.e. $17^{2}<300<18^{2}$ so $n=17$.
$484<500<529$, i.e. $22^{2}<500<23^{2}$, so $k=22$. So, $m+n+k=14+17+22=53$
5. In $\triangle P Q R, \angle Q=90^{\circ} . P Q=12, P R=13 . K$ is a point on side PQ such that $P K: K Q=1: 5$. Find $K R^{2}$.

Solution: By Pythagoras theorem in $\triangle P Q R$, we get $Q R^{2}=P R^{2}-P Q^{2}=169-144=25 \Rightarrow Q R=5$
Let $P K=x$, so $K Q=5 x$. Hence $P Q=P K+K Q=x+5 x=6 x$. But $P Q=12$, so we get $K Q=10$. Again by Pythagoras theorem in $\triangle K Q R$, we get $K R^{2}=K Q^{2}+Q R^{2}=10^{2}+5^{2}=125$.
6. Reena's age to Teena's age is $7: 5$. Ratio of Teena's age to Seena's age is $2: 3$. Sum of ages of all three girls is 39 . Find Teena's age.

Solution: Let Teena's age be x. So, Reena's age is $\frac{7}{5} x$ and Seena's age is $\frac{3}{2} x$, so we get $x+\frac{7}{5} x+\frac{3}{2} x=39 \Rightarrow x\left(1+\frac{7}{5}+\frac{3}{2}\right)=39 \Rightarrow x\left(\frac{39}{10}\right)=39 \Rightarrow x=10$
7. How many cubes with side 2 can be prepared by melting an aluminium cube with side 8 ?

Solution: Volume of a cube of side 2 is $2^{3}=8$. Volume of the aluminium cube $=8^{3}$. So, number of cubes that can be prepared is given by $\frac{8^{3}}{2^{3}}=\left(\frac{8}{2}\right)^{3}=4^{3}=64$.
8. $\frac{2}{3} \sqrt{576}+\frac{3}{4} \sqrt{784}+\frac{2}{5} \sqrt{625}=$

Solution: $\sqrt{576}=24, \sqrt{784}=28, \sqrt{625}=25$. So, $\frac{2}{3} \sqrt{576}+\frac{3}{4} \sqrt{784}+\frac{2}{5} \sqrt{625}=$ $\left(\frac{2}{3}\right)(24)+\left(\frac{3}{4}\right)(28)+\left(\frac{2}{5}\right)(25)=16+21+10=47$.
9. Two positive numbers a and b are such that $a: b=3: 4 . a^{2}+b^{2}=100$. Find $a+b$.

Solution: Let $a=3 k, b=4 k$. So, $a^{2}+b^{2}=9 k^{2}+16 k^{2}=25 k^{2}$. Therefore, $25 k^{2}=100 \Rightarrow k=2 \Rightarrow a=6, b=8 \Rightarrow a+b=14$
10. On real number line distance between points with coordinates $\frac{10}{3}$ and $-\frac{18}{7}$ is D_{1} and distance between points with coordinates $-\frac{5}{31}$ and $\frac{11}{62}$ is D_{2}. Find $D_{1} D_{2}$.
Solution: $D_{1}=\frac{10}{3}-\left(-\frac{18}{7}\right)=\frac{10}{3}+\frac{18}{7}=\frac{(10)(7)+(18)(3)}{(3)(7)}=\frac{124}{21}$
$D_{2}=\frac{11}{62}-\left(-\frac{5}{31}\right)=\frac{11}{62}+\frac{5}{31}=\frac{11+10}{62}=\frac{21}{62}$
$\therefore D_{1} D_{2}=\frac{124}{21} \frac{21}{62}=2$
11. B has money equal to $\frac{2}{5}^{\text {th }}$ of A. C has money equal to $\frac{7}{9}^{\text {th }}$ of B's. In all, they have 385 Rs. How much money does C have?
Solution: So we have $A+\left(\frac{2}{5}\right) A+\left(\frac{2}{5}\right)\left(\frac{7}{9}\right) A=385 \Rightarrow A\left(\frac{45+18+14}{45}\right)=385 \Rightarrow A=225$. So $C=\left(\frac{2}{5}\right)\left(\frac{7}{9}\right) 225=70$
12. Find the value of $\frac{1+k}{1-k}+\frac{2 k+3}{2 k-3}$ if $k=\frac{4}{3}$.

Solution: $\frac{1+k}{1-k}+\frac{2 k+3}{2 k-3}=\frac{1+\frac{4}{3}}{1-\frac{4}{3}}+\frac{2\left(\frac{4}{3}\right)+3}{2\left(\frac{4}{3}\right)-3}=-7+(-17)=-24$
13. A is cycling at the speed of $10 \mathrm{~km} / \mathrm{hr}$. B is cycling at the speed of $8 \mathrm{~km} / \mathrm{hr}$. Both start moving simultaneously from two places 1 km apart in the same direction. How far (in kms) will A have cycled before he overtakes B.

Solution: Suppose A overtakes B after t hours. So, difference in the distance travelled by A and B must be 1 km . In t hours, A travels $10 t \mathrm{~km}$ and B travels $8 t$ km . So, we get $10 t-8 t=1 \Rightarrow t=\frac{1}{2}$ hours. So, distance travelled by $\mathrm{A}=10\left(\frac{1}{2}\right)=5$ km.
14. $\square A B C D$ is such that $\angle A B C=\angle A D C=90^{\circ}$ $A B=24, B C=7, C D=15$. Find $A D$.
Solution: By applying Pythagoras theorem in $\triangle A B C$ and $\triangle A D C$, we get $A C^{2}=A B^{2}+B C^{2}=A D^{2}+D C^{2} \Rightarrow 24^{2}+7^{2}=15^{2}+A D^{2}$
$\Rightarrow A D^{2}=576+49-225=400 \Rightarrow A D=20$

15. Which of the following numbers is greater than $\frac{5}{7}$ but smaller that $\frac{11}{14}$.
(A) $\frac{6}{7}$
(B) $\frac{16}{21}$
(C) $\frac{4}{7}$
(D) $\frac{19}{21}$.

Report 10 if answer is $A, 20$ if answer is $B, 30$ if answer is $C, 40$ if answer is D.
Solution: Let's write all fractions with same denominator: Given numbers are $\frac{5}{7}=\frac{30}{42}, \frac{11}{14}=\frac{33}{42}$. The options are (A) $\frac{6}{7}=\frac{36}{42}$, (B) $\frac{16}{21}=\frac{32}{42}$, (C) $\frac{4}{7}=\frac{24}{42}$, (D) $\frac{19}{21}=\frac{38}{42}$. So, clearly 32 is between 30 and 33 , so option B is correct. Answer 20.
16. If 30 workers finish a job in 56 days, how many more workers should be employed to finish the same job in 24 days?

Solution: One worker will need 30×56 days to finish the job. So, n workers will need $\frac{(30 \times 56)}{n}$ days. So, we get $\frac{1680}{n}=24 \Rightarrow n=\frac{1680}{24}=70$. So $70-30=40$ more workers should be employed.
17. Sindhu must score 40% marks to pass an examination. She gets 295 marks which is 35 marks more than passing marks. What are the maximum marks in the examination?
Solution: 295-35 is 40% of the maximum marks. So, maximum marks $=\frac{260}{0.4}=650$.
18. As shown in figure $\overline{B I}$ and $\overline{C I}$ are internal angle bisectors of $\angle B$ and $\angle C$ respectively. If $\mathrm{m} \angle B I C=115$ degrees then find $\mathrm{m} \angle B A C$ in degrees.

Solution: From the figure, we get, in $\triangle B I C, x+y+115=180 \Rightarrow x+y=65$. In $\triangle A B C$, we have $\angle B A C+2 x+2 y=180 \Rightarrow \angle B A C=180-2 x-2 y=50$
19. Sum of the three consecutive even natural numbers is 2022 . Find the smallest amongst them.

Solution: Let the smalles number be n. So, $n+(n+2)+(n+4)=2022 \Rightarrow 3 n+6=$ $2022 \Rightarrow 3 n=2016 \Rightarrow n=672$.
20. Meaning of a^{b} is a multiplied to a, b times. For example $a^{4}=a \times a \times a \times a$. If $93=3^{x}+3^{y}+3^{z}$ where x, y, z are natural numbers, find $x+y+z$.
Solution: $93=81+9+3=3^{4}+3^{2}+3^{1} \Rightarrow x=4, y=2, z=1 \Rightarrow x+y+z=7$

Answer Key

Q.No.	1	2	3	4	5	6	7	8	9	10
Ans	0	2.7	9	55	125	10	64	47	14	2
Q.No.	11	12	13	14	15	16	17	18	19	20
Ans	70	-24	5	20	20	40	650	50	672	7

