1. Sum of seven consecutive odd natural numbers is 651. Find the largest number.

Solution: Let the largets number be n. So, the other numbers are n - 12, n - 10, n - 8, n - 6, n - 4, n - 2. So, we have $7n - 42 = 651 \Rightarrow 7n = 693 \Rightarrow n = 99$. **Ans. 99.**

2. What is the smallest natural number with which if we multiply 2023, we get perfect square.

Solution: $2023 = 7 \times 17 \times 17$. So, we need to multiply it by 7 to get a perfect square. Ans. 7.

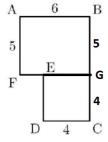
3. Number of whole natural numbers between $\sqrt[3]{7}$ and $\sqrt[3]{344}$ is

Solution: Since 1 < 7 < 8, we have $1 < \sqrt[3]{7} < 2$. Also, $343 < 344 < 512 \Rightarrow 7 < \sqrt[3]{344} < 8$. So, whole numbers between $\sqrt[3]{7}$ and $\sqrt[3]{344}$ are 2, 3, 4, 5, 6, 7. **Ans. 6**.

4. In triangle ABC, BD bisects angle B. If $m \angle C = \frac{2}{3}m \angle B$ and $m \angle B = 3m \angle A$ then $m \angle BDC$ is

Solution: $m \angle C = \frac{2}{3}m \angle B$ and $m \angle B = 3m \angle A$ $\Rightarrow m \angle C = 2m \angle A$. Since sum of the angles in a triangle is 180°, we get $3m \angle A + 2m \angle A + m \angle A = 180$ $\Rightarrow m \angle A = 30, m \angle B = 90, m \angle C = 60 \Rightarrow m \angle DBC = 45^{\circ}$ $\Rightarrow m \angle BDC = 180 - (60 + 45) = 75^{\circ}$. Ans. 75.

5. All angles of the polygon ABCDEF are right angles. Find the area of the polygon ABCDEF.



Solution: If you extend the line FE to intersect BC in G, then the figure gets divided in two parts, the top rectangle $\Box ABGF$ of size 6×5 and bottom square $\Box GCDE$ of side 4. So, total area = $6 \times 5 + 4 \times 4 = 46$. **Ans. 46.**

- 6. If a = -2, the value of largest number in the set {-4a, 4a, ²⁴/_a, a², 1} is
 Solution: After substituting a = -2, we get the set as {8, -8, -12, 4, 1} Ans. 8.
- 7. F is fraction halfway between $\frac{1}{5}$ and $\frac{1}{3}$ (on the number line). Find 105F.

Solution:
$$F = \frac{\frac{1}{5} + \frac{1}{3}}{2} = \frac{4}{15} \Rightarrow 105F = 28$$
. Ans. 28.

8. A square and a triangle have equal perimeters. The lengths of the three sides of the triangle are 6.2, 8.3, and 9.5. The area of the square is

Solution: Suppose the side of the square is x, so we get $4x = 6.2 + 8.3 + 9.5 = 24 \Rightarrow x = 6$ so, area of the square is $6^2 = 36$. Ans. 36.

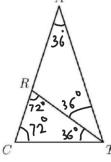
9. Simplify and find
$$\frac{95}{2-\frac{5}{12}} =$$

Solution: $\frac{95}{2-\frac{5}{12}} = \frac{95}{\frac{2\times12-5}{12}} = \frac{95\times12}{19} = 60$. Ans. 60.

10. The number 64 has the property that it is divisible by its units digit. How many whole numbers between 10 and 50 have this property?

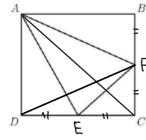
Solution: The numbers are 11, 12, 15, 21, 22, 24, 25, 31, 32, 33, 35, 36, 41, 42, 44, 45, 48. Ans. 17.

11. In triangle CAT, we have $\angle ACT = \angle ATC$ and $\angle CAT = 36^{\circ}$. \overline{TR} bisects $\angle ATC$, If CT = 29 then find AR



Solution: Using sum of angles = 180, we get $\angle ACT = \angle ATC = 72$, so $\angle CTR = \angle ATR = 36$ which gives $\angle CRT = 72$. So, we get CT = TR = RA. Ans. 29.

12. The area of rectangle ABCD is 72. If point A and the midpoints of \overline{BC} and \overline{CD} are joined to form a triangle, the area of that triangle is



B Solution: Clearly, area (ΔACD) = area (ΔACB) = 36. Since base of ΔADE is DE, which is half of the base of ΔACD and they have the same height AD, area $(\Delta ADE) = \frac{1}{2} \operatorname{area}(\Delta ACD) =$ **F** 18. By the same logic, we can show that area $(\Delta FEC) = \frac{1}{2} \operatorname{area}(\Delta DCF) = 9$. So, area $(\Delta AEF) = \operatorname{area}(\Box ABCD) - \operatorname{area}(\Delta AED) - \operatorname{area}(\Delta AEF) = \operatorname{area}(\Delta AED) = 72 - 18 - 18 - 9 = 27$. **C** Ans. 27.

13. For any positive integer n, define \boxed{n} (n inside a square box) to be the sum of all positive factors of n. For example, $\boxed{6} = 1 + 2 + 3 + 6 = 12$. $K = \boxed{11}$ Find \boxed{K} .

Solution: 11 = 12. Factors of 12 are 1, 2, 3, 4, 6, 12, so 12 = 1 + 2 + 3 + 4 + 6 + 12 = 28. Ans. 28.

14. The base of an isosceles $\triangle ABC$ is 24 and its area is 60 . What is the perimeter of $\triangle ABC$?

Solution: So, height of the triangle is $\frac{2 \times 60}{24} = 5$. Suppose *BC* is the base. Suppose *D* is the midpoint of *BC*. Since the triangle is isoceles, $AD \perp BC$, so using Pythagoras theorem, we get $AC^2 = AD^2 + DC^2 = 5^2 + 12^2 = 169 \Rightarrow AB = AC = 13$, so perimeter = 13 + 13 + 24 = 50. **Ans. 50**.

15. $\frac{1}{2}$ of $\frac{1}{3}$ of $\frac{1}{4}$ of $\frac{1}{5}$ of $\frac{1}{6}$ of 26640 is

Solution: $\frac{1}{2}$ of $\frac{1}{3}$ of $\frac{1}{4}$ of $\frac{1}{5}$ of $\frac{1}{6}$ of $26640 = \frac{26640}{2 \times 3 \times 4 \times 5 \times 6} = 37$. Ans. 37.

16. If $25^{3-2x} = 5^{-6}$, find x.

Solution: $25 = 5^2$ so $25^{3-2x} = 5^{2(3-2x)} = 5^{6-4x}$ so, we have $6 - 4x = -6 \Rightarrow x = 3$. Ans. 3.

17. 50 ml of concentrated Kokam syrup is mixed with water for making a glass of 250 ml tasty Kokam Sharabat. How many liters of water is required to make 70 glasses of Kokam Sharabat.

Solution: Since one glass of 250 ml contains 50 ml of concentrated syrup, it contains 200 ml of water. So, 70 glasses need $70 \times 200 = 14000$ ml = 14 liters of water. Ans. 14.

$$18. \ \frac{\sqrt{200} + \sqrt{300}}{\sqrt{8} + \sqrt{12}} =$$

Solution: Observe that $\sqrt{200} = \sqrt{100 \times 2} = 10\sqrt{2}$. Similarly, $\sqrt{300} = 10\sqrt{3}$, $\sqrt{8} = 2\sqrt{2}$, $\sqrt{12} = 2\sqrt{3}$, so we have $\frac{\sqrt{200} + \sqrt{300}}{\sqrt{8} + \sqrt{12}} = \frac{10(\sqrt{2} + \sqrt{3})}{2(\sqrt{2} + \sqrt{3})} = 5$. Ans. 5.

- 19. If $\frac{3}{7}\left(1-\frac{7}{94}k\right) + \frac{1}{5}\left(1+\frac{7}{94}k\right) + \frac{2}{3}\left(1-\frac{7}{94}k\right) = 0$, then find the value of $\frac{7k}{2}$. **Solution:** Let $\frac{7k}{94} = u$. So, we have, after transferring terms of u on one side, $\frac{3}{7} + \frac{1}{5} + \frac{2}{3} = (\frac{3}{7} - \frac{1}{5} + \frac{2}{3})u \Rightarrow u = \frac{136}{94} \Rightarrow \frac{7k}{94} = \frac{136}{94} \Rightarrow 7k = 136 \Rightarrow \frac{7k}{2} = \frac{136}{2} = 68$. **Ans. 68.**
- 20. R is a rational number. Instead of multiplying R by 3 and then subtracting 7, Rahul divided it by 3 and then added 7. Surprisingly he got the same answer. Report 4R Solution: We have 3R 7 = ^R/₃ + 7 ⇒ 3R ^R/₃ = 14 ⇒ ^{8R}/₃ = 14 ⇒ 4R = 21. Ans. 21.