1. Sum of seven consecutive odd natural numbers is 651 . Find the largest number.

Solution: Let the largets number be n. So, the other numbers are $n-12, n-10, n-8, n-6, n-4, n-2$. So, we have $7 n-42=651 \Rightarrow 7 n=693 \Rightarrow$ $n=99$. Ans. 99.
2. What is the smallest natural number with which if we multiply 2023, we get perfect square.

Solution: $2023=7 \times 17 \times 17$. So, we need to multiply it by 7 to get a perfect square. Ans. 7.
3. Number of whole natural numbers between $\sqrt[3]{7}$ and $\sqrt[3]{344}$ is

Solution: Since $1<7<8$, we have $1<\sqrt[3]{7}<2$.
Also, $343<344<512 \Rightarrow 7<\sqrt[3]{344}<8$. So, whole numbers between $\sqrt[3]{7}$ and $\sqrt[3]{344}$ are $2,3,4,5,6,7$. Ans. 6.
4. In triangle $A B C, B D$ bisects angle B. If $m \angle C=\frac{2}{3} m \angle B$ and $m \angle B=3 m \angle A$ then $m \angle B D C$ is

Solution: $m \angle C=\frac{2}{3} m \angle B$ and $m \angle B=3 m \angle A$

$\Rightarrow m \angle C=2 m \angle A$. Since sum of the angles in a triangle
is 180°, we get $3 m \angle A+2 m \angle A+m \angle A=180$
$\Rightarrow m \angle A=30, m \angle B=90, m \angle C=60 \Rightarrow m \angle D B C=45^{\circ}$
$\Rightarrow m \angle B D C=180-(60+45)=75^{\circ}$. Ans. 75 .
5. All angles of the polygon $A B C D E F$ are right angles. Find the area of the polygon $A B C D E F$.

Solution: If you extend the line $F E$ to intersect $B C$ in G,
then the figure gets divided in two parts,
the top rectangle $\square A B G F$ of size 6×5 and
bottom square $\square G C D E$ of side 4 .
So, total area $=6 \times 5+4 \times 4=46$. Ans. 46.
6. If $a=-2$, the value of largest number in the set $\left\{-4 a, 4 a, \frac{24}{a}, a^{2}, 1\right\}$ is

Solution: After substituting $a=-2$, we get the set as $\{8,-8,-12,4,1\}$ Ans. 8.
7. F is fraction halfway between $\frac{1}{5}$ and $\frac{1}{3}$ (on the number line). Find $105 F$.

Solution: $F=\frac{\frac{1}{5}+\frac{1}{3}}{2}=\frac{4}{15} \Rightarrow 105 F=28$. Ans. 28.
8. A square and a triangle have equal perimeters. The lengths of the three sides of the triangle are $6.2,8.3$, and 9.5 . The area of the square is
Solution: Suppose the side of the square is x, so we get $4 x=6.2+8.3+9.5=$ $24 \Rightarrow x=6$ so, area of the square is $6^{2}=36$. Ans. 36 .
9. Simplify and find $\frac{95}{2-\frac{5}{12}}=$

Solution: $\frac{95}{2-\frac{5}{12}}=\frac{95}{\frac{2 \times 12-5}{12}}=\frac{95 \times 12}{19}=60$. Ans. 60.
10. The number 64 has the property that it is divisible by its units digit. How many whole numbers between 10 and 50 have this property?
Solution: The numbers are 11, 12, 15, 21, 22, 24, 25, 31, 32, 33, 35, 36, 41, 42, 44, 45, 48 . Ans. 17.
11. In triangle $C A T$, we have $\angle A C T=\angle A T C$ and $\angle C A T=36^{\circ} . \overline{T R}$ bisects $\angle A T C$, If $C T=29$ then find $A R$

Solution: Using sum of angles $=180$, we get $\angle A C T=\angle A T C=72$, so $\angle C T R=\angle A T R=36$ which gives $\angle C R T=72$. So, we get $C T=T R=R A$.
Ans. 29.
12. The area of rectangle $A B C D$ is 72 . If point A and the midpoints of $\overline{B C}$ and $\overline{C D}$ are joined to form a triangle, the area of that triangle is

${ }^{B}$ Solution: Clearly, area $(\triangle A C D)=\operatorname{area}(\triangle A C B)=36$. Since base of $\triangle A D E$ is $D E$, which is half of the base of $\triangle A C D$ and they have the same height $A D$, area $(\triangle A D E)=\frac{1}{2}$ area $(\triangle A C D)=$ F 18. By the same logic, we can show that area $(\triangle F E C)=$ $\frac{1}{2} \operatorname{area}(\triangle D C F)=9$. So, area $(\triangle A E F)=\operatorname{area}(\square A B C D)-$ $\operatorname{area}(\triangle A E D)-\operatorname{area}(\triangle A B F)-\operatorname{area}(\triangle E C F)=72-18-18-9=27$. Ans. 27.
13. For any positive integer n, define n (n inside a square box) to be the sum of all positive factors of n. For example, $\sqrt{6}=1+2+3+6=12 . K=11$ Find K.
Solution: $11=12$. Factors of 12 are $1,2,3,4,6,12$, so $12=1+2+3+4+6+12=28$. Ans. 28.
14. The base of an isosceles $\triangle A B C$ is 24 and its area is 60 . What is the perimeter of $\triangle A B C$?
Solution: So, height of the triangle is $\frac{2 \times 60}{24}=5$. Suppose $B C$ is the base. Suppose D is the midpoint of $B C$. Since the triangle is isoceles, $A D \perp B C$, so using Pythagoras theorem, we get $A C^{2}=A D^{2}+D C^{2}=5^{2}+12^{2}=169 \Rightarrow A B=A C=13$, so perimeter $=13+13+24=50$. Ans. 50 .
15. $\frac{1}{2}$ of $\frac{1}{3}$ of $\frac{1}{4}$ of $\frac{1}{5}$ of $\frac{1}{6}$ of 26640 is

Solution: $\frac{1}{2}$ of $\frac{1}{3}$ of $\frac{1}{4}$ of $\frac{1}{5}$ of $\frac{1}{6}$ of $26640=\frac{26640}{2 \times 3 \times 4 \times 5 \times 6}=37$. Ans. 37.
16. If $25^{3-2 x}=5^{-6}$, find x.

Solution: $25=5^{2}$ so $25^{3-2 x}=5^{2(3-2 x)}=5^{6-4 x}$ so, we have $6-4 x=-6 \Rightarrow x=3$.
Ans. 3.
17. 50 ml of concentrated Kokam syrup is mixed with water for making a glass of 250 ml tasty Kokam Sharabat. How many liters of water is required to make 70 glasses of Kokam Sharabat.

Solution: Since one glass of 250 ml contains 50 ml of concentrated syrup, it contains 200 ml of water. So, 70 glasses need $70 \times 200=14000 \mathrm{ml}=14$ liters of water. Ans. 14.
18. $\frac{\sqrt{200}+\sqrt{300}}{\sqrt{8}+\sqrt{12}}=$

Solution: Observe that $\sqrt{200}=\sqrt{100 \times 2}=10 \sqrt{2}$. Similarly, $\sqrt{300}=10 \sqrt{3}, \sqrt{8}=$ $2 \sqrt{2}, \sqrt{12}=2 \sqrt{3}$, so we have $\frac{\sqrt{200}+\sqrt{300}}{\sqrt{8}+\sqrt{12}}=\frac{10(\sqrt{2}+\sqrt{3})}{2(\sqrt{2}+\sqrt{3})}=5$. Ans. 5 .
19. If $\frac{3}{7}\left(1-\frac{7}{94} k\right)+\frac{1}{5}\left(1+\frac{7}{94} k\right)+\frac{2}{3}\left(1-\frac{7}{94} k\right)=0$, then find the value of $\frac{7 k}{2}$.

Solution: Let $\frac{7 k}{94}=u$. So, we have, after transferring terms of u on one side, $\frac{3}{7}+\frac{1}{5}+\frac{2}{3}=\left(\frac{3}{7}-\frac{1}{5}+\frac{2}{3}\right) u \Rightarrow u=\frac{136}{94} \Rightarrow \frac{7 k}{94}=\frac{136}{94} \Rightarrow 7 k=136 \Rightarrow \frac{7 k}{2}=\frac{136}{2}=68$.

Ans. 68.

20. R is a rational number. Instead of multiplying R by 3 and then subtracting 7, Rahul divided it by 3 and then added 7. Surprisingly he got the same answer. Report $4 R$
Solution: We have $3 R-7=\frac{R}{3}+7 \Rightarrow 3 R-\frac{R}{3}=14 \Rightarrow \frac{8 R}{3}=14 \Rightarrow 4 R=21$. Ans. 21.
