1. Sum of two Natural numbers m and n is 5760 and difference between them is $\frac{1}{3}$ of the larger number. Find larger number.

Solution: Suppose m is the larger number. So, smaller number is $5760-m$. So we get $m-(5760-m)=\frac{m}{3} \Rightarrow \frac{5}{3} m=5760 \Rightarrow m=3456$.
2. Find $\frac{26}{5} \times \frac{35}{13} \times \frac{337}{7} \times \frac{198}{66}=$.

Solution: Simple question. All the numbers in the denominator get cancelled and we get 337×6 in the numerator. Answer is 2022 .
3. If $a: b=7: 3$, and $\left(a^{2}\right)\left(b^{2}\right)=7056$, then $a-b=$?

Solution: Let $a=7 k, b=3 k$, so $a^{2} b^{2}=49 \times 9 \times k^{4} \Rightarrow 49 \times 9 \times k^{4}=7056$ $\Rightarrow k=2 \Rightarrow a=14, b=6 \Rightarrow a-b=8$.
4. $\sqrt{150}$ lies between natural numbers $m-1$ and m. $\sqrt{250}$ lies between natural numbers $n-1$ and $n . \sqrt{600}$ lies between natural numbers $p-1$ and p. Find $m+n+p$.

Solution: We know $144<150<169$, so $m=13$. Also, $225<250<256$, so $n=16$. Similarly $576<600<625$, so $p=25$. So, $m+n+p=13+16+25=54$.
5. $\triangle A B C$ is right angled triangle as shown. $D C=x, D B=2 x, A B=3 x$, if $A C=3 \sqrt{26}$ find $A D$.

Solution: Using Pythagoras theorem in $\triangle A B C$, we get $A C^{2}=(3 x)^{2}+(3 x)^{2}$, i.e. $234=18 x^{2} \Rightarrow x^{2}=13$.
Using Pythagoras theorem in $\triangle A B D$, we get $A D^{2}=(3 x)^{2}+(2 x)^{2}=13 x^{2}=169$, so $A D=13$.
6. Let $A=75 \%$ of 60% of 40 and $B=40 \%$ of 120% of 50 . Find $A+B$.

Solution: $A=0.75 \times 0.6 \times 40=\frac{3}{4} \times \frac{3}{5} \times 40=18$. Similarly $B=0.4 \times 1.20 \times 50=24$. So, $A+B=18+24=42$
7. Let $\frac{m}{n}=4$, Find $\frac{2 m^{2}+8 n^{2}}{m^{2}-6 n^{2}}$.

Solution: Let $m=4 n \Rightarrow \frac{2 m^{2}+8 n^{2}}{m^{2}-6 n^{2}}=\frac{2(4 n)^{2}+8 n^{2}}{(4 n)^{2}-6 n^{2}}=\frac{32 n^{2}+8 n^{2}}{16 n^{2}-6 n^{2}}=\frac{40 n^{2}}{10 n^{2}}=4$.
8. Find $\frac{\sqrt{5.29}+\sqrt{13.69}}{\sqrt{0.0001} \times \sqrt{0.36}}$.

Solution: $\frac{\sqrt{5.29}+\sqrt{13.69}}{\sqrt{0.0001} \times \sqrt{0.36}}=\frac{2.3+3.7}{0.01 \times 0.6}=\frac{6}{0.006}=1000$.
9. A number consists of 2 digits. The digit at unit's place is 3 times that in 10 's place. If the digits are interchanged a new 2 digited number if formed. Let K be this new number. Also $K-15$ is equal to 2 times the original number. Find the original number.

Solution: Let the digit at ten's place be x. So, the digit at unit place is $3 x$. So, the number is $10 x+3 x=13 x$. So, new number looks like $(3 x)(x)$, i.e. it is $10(3 x)+x=31 x$. So, we have $31 x-15=2(13 x) \Rightarrow x=3$, so the original number is 39 .
10. On real number line distance between points with coordinates $\frac{13}{7}$ and $\frac{5}{3}$ is D_{1} and distance between points with coordinates $-\frac{97}{7}$ and $-\frac{11}{21}$ is D_{2}. Find $\frac{D_{2}}{D_{1}}$.
Solution: $D_{1}=\frac{13}{7}-\frac{5}{3}=\frac{(13)(3)-(5)(7)}{(7)(3)}=\frac{4}{21}$.
$D 2=-\frac{11}{21}-\left(-\frac{97}{7}\right)=\frac{(97)(3)-11}{21}=\frac{280}{21}$
$\Rightarrow \frac{D_{2}}{D_{1}}=\frac{280}{21} \div \frac{4}{21}=70$.
11. B has money equal to $\frac{3}{7}^{\text {th }}$ of A and C has money equal to $\frac{11^{\text {th }}}{3}$ of B 's. In all, they have 2022 Rs. How much money does A have?

Solution: $B=\frac{3}{7} A$ and $C=\frac{11}{3} B=\frac{11}{3} \times \frac{3}{7} A=\frac{11}{7} A$
$\Rightarrow A+B+C=\left(\frac{3}{7}+\frac{11}{7}+1\right) A=3 A$. So, we get $3 A=2022 \Rightarrow A=674$.
12. Sum of 7 consecutive odd numbers is 133. If we ignore first and last, what is the sum of remaining five?

Solution: Let the first number be n. So, we get $(n)+(n+2)+(n+4)+(n+6)+$ $(n+8)+(n+10)+(n+12)=133 \Rightarrow 7 n+42=133 \Rightarrow n=13$. Sum of first and last is $13+(13+12)=38$. So, answer is $133-38=95$
13. $\square A B C D$ is such that $\angle A B C=90^{\circ}$ and $\overline{D L} \perp \overline{A C}$ If $A B=8, B C=6$ and $D L=7$ then find the area of the $\square A B C D$.

Solution: By Pythagoras theorem, $A C^{2}=A B^{2}+B C^{2}=64+36=100$ $\Rightarrow A C=10$. So, area of $\square A B C D=$ area of $\triangle A B C+$ area of $\triangle A C D=$ $\frac{1}{2}(A B)(B C)+\frac{1}{2}(A C)(L D)=\frac{48+70}{2}=59$
14. Which of the fraction is largest among $\frac{2}{5}, \frac{5}{11}, \frac{8}{17}$?

Report 10 if answer is $\frac{2}{5}, 20$ if answer is $\frac{5}{11}, 30$ if answer is $\frac{8}{17}$.
Solution: Let's make the denominator same for all.
$\frac{2}{5}=\frac{2(11)(17)}{(5)(11)(17)}=\frac{374}{935}, \quad \frac{5}{11}=\frac{5(5)(17)}{(5)(11)(17)}=\frac{425}{935}, \quad \frac{8}{17}=\frac{8(5)(11)}{(5)(11)(17)}=\frac{440}{935}$.
Since the largest numerator is $440, \frac{8}{17}$ is the largest. Answer 30.
15. If $a+b+c=0$ then $\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)$ equals.

Solution: Since $a+b+c=0$, we get $a+b=-c, b+c=-a, c+a=-b$, etc. So, $\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=(-1+-1+-1)(-1+-1+-1)=9$.
16. 15 workers make 30 machines in 8 days. Find the number of days needed by 30 workers to make 15 machines.

Solution: Since 15 workers make 30 machines in 8 days, they will make 15 machines in 4 days. So, 30 workers will need only two days to make 15 machines. Answer is 2.
17. If A's score is 25% more than B's score, by what percent is B's score less than A ?

Solution: Suppose B has 100 score. So, A's score is 125 .
So, B's score is $\frac{100}{125} \times 100=80$ percent of A. So, it is 20 percent less.
18. As shown in the figure, $\triangle \mathrm{DBC}$ is an equilateral triangle and $\triangle A B C$ is an isosceles triangle, such that $m \angle A: m \angle D=1: 3$. Find $m \angle A D C$.

Solution: Since the figure is symmetric about the line $A D$, we can claim that $\angle A D B=\angle A D C$. Also, $\angle A D B+\angle A D C+\angle B D C=360^{\circ}$. But $\angle B D C=60^{\circ}$, so we get $\angle A D C=\frac{360-60}{2}=150^{\circ}$.
19. Find the difference in the sums of all two - digit odd numbers and two- digit even numbers.

Solution: Two digit even numbers are $10,12,14, \ldots, 96,98$. Two digit odd numbers are $11,13,15, \ldots, 97,99$. So, for every odd number, there is an even number, which is one less than the odd number.
$(11-10)+(13-12)+(15-14)+\cdots+(97-96)+(99-98)=1+1+1+\cdots+1+1$.
Totally there are 45 even and 45 odd numbers. So, the answer is 45 .
20. Meaning of a^{b} is a multiplied to a, b times. For example $a^{4}=a \times a \times a \times a$. If $775=5^{x}+5^{y}+5^{z}$ where x, y, z are natural numbers, find $x+y+z$.

Solution: We know that $775=625+125+25=5^{4}+5^{3}+5^{2}$. So answer is $4+3+2=9$.

Answers:

1	2	3	4	5	6	7	8	9	10
3456	2022	8	54	13	42	4	1000	39	70
11	12	13	14	15	16	17	18	19	20
674	95	59	30	9	2	20	150	45	9

