Atomic numbers: $\mathrm{H}: 1, \mathrm{C}: 6, \mathrm{~N}: 7, \mathrm{O}: 8, \mathrm{~F}: 9, \mathrm{Na}: 11, \mathrm{Mg}: 12, \mathrm{~S}: 16, \mathrm{Cl}: 17, \mathrm{~K}: 19$, Ca:20, Mn:25, Fe:26, Cu:29, Zn:30, Ag:47 Sn:50,W:74.
Atomic masses: H:1, C:12, N:14, O:16, F: 19, Na:23, Mg:24,S:32, Cl:35.5, K:39, Ca: 40, Mn:55, Fe: 56, Cu : 63.5, Zn : 65, Ag : 108, Sn : 119, W : 184.
11) Atomic number of an element ' A ' is 46 . Write the group number in which ' A ' is present in the Modern periodic table.

Solution:

Electronic Configuration of ' A ' $=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{0} 4 d^{10}$ hence, the last electron enters in penultimate ($\mathrm{n}-1$)th shell. The element belongs to ' d ' block. Total 1d' electrons in it are 10. Hence, it represents the group number of element ' A '.
Answer $=10$
12) What is the amount in grams of water produced when 1 mole of Copper metal is treated with dilute nitric acid solution?

Solution:

Copper reacts with cold and dilute nitric acid to yield cupric nitrate, water and nitric oxide.
$3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \longrightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}$
According to this equation,
3 mole $\mathrm{Cu} \equiv 4$ mole of water
Hence, 1 mole of $\mathrm{Cu} \equiv 4 / 3$ mole of water.
Hence, Mass of water is grams $=4 / 3 \times 18=24$ grams
Answer $=24$
13) Following are the IUPAC names of some compounds. Write the molar mass of the compound with CORRECT name.
(i) 4-Chloropentane (ii) Propan -1-ol (iii) Butan-3-oic acid.

Solution:

Correct IUPAC Name among the given ones is Propan-1-ol. Its molar mass is 60
Answer $=60$
14) $34 \mathrm{gm} \mathrm{AgNO}_{3}$ is present in it's aqueous solution. It is completely reacted with NaCl . The product is filtered. The filtrate is heated to dryness. Write the mass of the dry filtrate in grams.

Solution:

The reaction involved in the given situation is : $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$
The filtrate is NaNO_{3} and precipitate in this situation is AgCl .
Now,
1 mole of $\mathrm{AgNO}_{3}=1$ mole of NaNO_{3}
$\therefore 170$ grams of $\mathrm{AgNO}_{3}=85$ grams of NaNO_{3}
$\therefore 34$ grams of $\mathrm{AgNO}_{3}=17$ grams of NaNO_{3}
Answer $=17$
15) Write the molar mass of the lowest hydrocarbon with one double bond and one triple bond in it.

Solution:

Hydrocarbon is vinylacetylene with structural formula : $\mathrm{H}_{2} \mathrm{C}-\mathrm{HC}-\mathrm{C} \equiv \mathrm{CH}$
Its molar mass $=52$
Answer $=52$
16) When Copper is treated with concentrated and dilute Nitric acid separately, we get a gaseous product in each reaction. Write the difference in the molar masses of gaseous products of both the reactions.

Solution:

Copper reacts with concentrated nitric acid to yield cupric nitrate, water and nitrogen dioxide gas.
$\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Copper reacts with dilute nitric acid to yield cupric nitrate, water and nitric oxide gas. $3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \longrightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}$
The gases are nitrogen monoxide and nitrogen dioxide.
Difference in their molar masses $=16$
Answer $=16$
17) Take 171 grams of Sugar in an evaporating dish and heat it with the help of a bunsen burner. After some time, you will see the formation of a burnt out black substance. What will be the mass in grams of the black substance?

Solution:

This reaction shows the dehydration of sugar crystals.

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\text { Strong Heat } \rightarrow 12 \mathrm{C}+11 \mathrm{H}_{2} \mathrm{O}
$$

Black spongy charred mass of carbon is obtined and the steam is evolved.
1 mole of sugar gives 12 mole of black substance (carbon)
$\therefore 342$ grams of sugar gives 144 grams of black substance (carbon)
And 171 grams of sugar gives 72 grams mole of black substance (carbon)
Answer $=72$
18) On heating, Potassium chlorate $\left(\mathrm{KClO}_{3}\right)$ decomposes slowly.

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

The rate of the above reaction neither increases by reducing the particle size nor by increasing the reaction temperature.. However KClO_{3} decomposes rapidly in presence of a metal oxide to liberate O_{2} gas. No chemical change takes place in the metal oxide in the above reaction. What is the molar mass of the metal oxide used?

Solution:

$2 \mathrm{KClO}_{3}(\mathrm{~s})+M n O_{2}($ Catalyst $) \xrightarrow{\text { Heat }} 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
Molar Mass of catalyst $=87$
Answer $=87$
19) Casseterite is a Tin ore. It contains mainly the non magnetic ingredient, a metal oxide, MO_{2} and the magnetic ingredient, Ferrous tungstate, FeWO_{4}. Identify MO_{2} and write the atomic number of ' M '.

Solution:

Casseterite contains SnO_{2}
Atomic number of $\mathrm{Sn}=50$
Answer $=50$
20) The reactions in which simultaneous oxidation and reduction of reacting species takes place are called as redox reactions. Transfer of electrons in a reaction from one species to another is also a form of oxidation and reduction. Study the following reactions. How many of them are redox reactions?
(i) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$
(ii) $4 \mathrm{Na}_{(\mathrm{s})}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}$
(iii) $\mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}$
(iv) $\mathrm{Cl}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{HOCl}_{(a q)}+\mathrm{HCl}_{(a q)}$
(v) $Z n_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{ZnCl}_{2(a q)}+\mathrm{H}_{2(g)} \uparrow$
(vi) $2 \mathrm{~K}_{(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow 2 \mathrm{KOH}_{(a q)}+\mathrm{H}_{2(g)}$
(vii) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2} \uparrow$
(viii) $\mathrm{CuSO}_{4(a q)}+\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{MgSO}_{4(a q)}+\mathrm{Cu}_{(s)}$
(ix) $\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(x) $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
(xi) $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} \uparrow$

Solution:

Reaction number (ii), (iv), (v), (vi), (viii), (x) and (xi) are redox type.
Total redox reactions are 7 .
(There is a typo error in the provided key.)

Answer $=7$

1. Net downward force on the assembly at the moment of release is 20 N . The total mass of the assembly at release is $(4+4+2)=10 \mathrm{~kg}$. Therefore, the net acceleration of the assembly is $20 / 10=2 \mathrm{~m} / \mathrm{s}^{2}$. Because of the inextensible string displacement of both blocks will be the same.

Block a starts from rest $(u=0), a=+2 m / s^{2}$ and $S=1 m$, using $v^{2}-u^{2}=2 a S$ we get $v=2 m / s$.
2. The ball is shot up when it is $(29+1)=30 \mathrm{~m}$ above the ground and reaches maximum height at 75 m above ground. So it covers 45 m as a projectile shot vertically up. Using $v^{2}-u^{2}=2 a S$ we get $u=30 \mathrm{~m} / \mathrm{s}$ and total time of flight as $2 u / g=6 \mathrm{sec}$. So the time taken for ball to reach 75 m is 3 sec . In these 3 seconds the lift reaches 60 m above the ground. From this point the ball is falling down with $u=0$ and lift is travelling up with $u=10 \mathrm{~m} / \mathrm{s}$ and the distance separating them is $(75-60)=15 \mathrm{~m}$. They will meet each other after 1 second. In this 1 second the ball would have travelled 5 m . So the total distance the ball has travelled by the time it is caught again is $(45+5)=50 \mathrm{~m}$.
3. Since the graph makes an angle of 45 degrees, for any point on the line $x=y$ or the magnitude of u is equal to the magnitude of v. The lens formula is $1 / f=1 / v-1 / u$. So for the given convex lens we get $u=-u$ and $v=u$. Substituting in the lens formula we get $u=2 f$. So the y coordinate is $v=2 f=40 \mathrm{~cm}$
4. Let the wooden block and the bullet collide after time t. Displacement of wooden block $=-1 / 2$ $\left(10 t^{2}\right)$ and displacement bullet 100 - distance travelled by wooden block $=100 t-1 / 2\left(10 t^{2}\right)$. Solving for t gets $u s t=1$ second and so they collide 5 m below the cliff top. Using $v=u+a t$, we get the velocity of wooden block and velocity of bullet just before collision as $-10 \mathrm{~m} / \mathrm{s}$ and $+90 \mathrm{~m} / \mathrm{s}$. Using conservation of linear momentum $m u_{w}+m u_{b}=2 m V$ and solving for V gives $V=+40 \mathrm{~m} / \mathrm{s}$. At maximum height v of combined mass is 0 . Using $v^{2}-u^{2}=2$ aS for combined mass, we get $S=80 \mathrm{~m}$. So height above cliff top $80-5=75 \mathrm{~m}$.
5. Answer not matching
6. Answer not matching
7. At $t=40$ seconds velocity is $2 \mathrm{~m} / \mathrm{s}$. So $u=2 \mathrm{~m} / \mathrm{s}, \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}$, the displacement during $\mathrm{t}=60$ and $t=62$ is $\left(S_{62}-S_{60}\right)$. Using $S=u t+1 / 2 t^{2}$ and substituting the values we get 88 m .
8. Let H be the height of tank and A be its area. The density of boat is $1000 / 4=250 \mathrm{~kg} / \mathrm{m}^{3}$ and density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Let $\mathrm{V}_{\text {in }}$ be the volume of boat submerged when floating. So $250 \mathrm{~V}_{\text {in }} \mathrm{g}=1000 \mathrm{~V}_{\text {water displaced }} \mathrm{g}$. Now Vol = Area x height. So $250 \mathrm{H}_{\text {in }}=1000 \mathrm{H}$. Solving this gives percentage of volume till water flows from the top as 75 percent.
9. Let time taken by car A be t, so time taken by car B is $(t+5)$. Now $V_{1}=a_{A} t$ and $V_{2}=a_{B}(t+5)$ So $V 1-V 2=\left(a_{A}-a_{B}\right) t-5 a_{B}$. Now $S_{A}=S_{B}$ so we get $a_{A} t^{2}=a_{B}(t+5)^{2}$ solving this gives $\left(a_{A}{ }^{1 / 2}-\right.$ $\left.a_{B}{ }^{1 / 2}\right) t=5 a_{B}{ }^{1 / 2}$. Substituting the value of t from this equation into $V 1-V 2$ equation gives us $5\left(a_{A} a_{B}\right)^{1 / 2}$, so answer is $15 \mathrm{~m} / \mathrm{s}$.
10. The resistors $r / 2$ and r at the inverted triangle on the top are in parallel to each other. Their equivalent resistance is $r / 3$. This is in series with the adjacent r. So their equivalent is $4 r / 3$. This $4 r / 3$ is in parallel with the r at the bottom. So equivalent resistance is $4 r / 7$. This is in series with the next $4 r / 7$. So total equivalent resistance is $8 r / 7$, substituting $r=7$ ohm gives answer as 8 ohm.
21. Let $m \angle F C B=x$
$\Rightarrow m \angle G C F=x \ldots$ Angle bisector
$\Rightarrow m \angle E G H=64+2 x$.. Exterior angle of $\triangle G B C$
$\Rightarrow m \angle A E G=(64+2 x)-28=36+2 x$
$\Rightarrow m \angle G E D=180-(36+2 x)=144-2 x$
$\Rightarrow m \angle G E H=72-x \ldots$ Angle bisector
$\Rightarrow m \angle E H C=(64+2 x)+(72-x)$
$=146+x \Rightarrow m \angle H F C=(146+x)-x=146=K \Rightarrow \frac{K}{2}=73$.

22. Note $\triangle B D C$ is $45-45-90$, Let side $A C=S \Rightarrow B D=\sqrt{2} S$

Distance between $B D$ and $C E$ is half of $A C$ as $A C \perp B D=\frac{S}{\sqrt{2}}$.
K is foot of perpendicular from D on $\overline{B F}$.
Note $m \angle B K D=90$ and $B D=2 D K \quad\left(\sqrt{2} S=2 \times \frac{S}{\sqrt{2}}\right) \Rightarrow \triangle B D K$ is $30-60-90$.
$\Rightarrow m \angle D B K=30$
$\Rightarrow m \angle C B F=45-30=15$.

23. Given $m \angle X O Z=72$
$\Rightarrow m \angle X A Z=36$ and $m \angle X B Z=36$
Note $m \angle A X B=m \angle A Z B=90$
$\Rightarrow m \angle A T X=90-36=54$
$\Rightarrow m \angle R T Q=54$
Note $\square R Y T Q$ is cyclic
$\Rightarrow m \angle R=Y Q=54$.
Let $m \angle P Q Y=9$ and $m \angle S R Y=b$
$\Rightarrow m \angle Y Q C=180-a$
$\Rightarrow m \angle Y R C=180-b$.
$\Rightarrow m \angle Q C R=360-[(180-a)+(180-b)+54]$
$=a+b-54$.
Note $m \angle P X Y=a=m \angle Y Z A \cdots \square A X Y Z$ is cyclic
also $m \angle S Z Y=b=m \angle Y X B \ldots$ $\square B X Y Z$ is cyclic
Note $m \angle P X Q=90 \Rightarrow a+b=90$

24. Note $\triangle E B C \cong \triangle F C D$ by SAS.

As shown in figure $x+y=90 \Rightarrow m \angle C P F=90$
Note $\triangle C P F \sim \triangle C B E$ by $A A$

$$
\begin{aligned}
& \Rightarrow \frac{C P}{C B}=\frac{P E}{B E} \\
& \Rightarrow C P=\sqrt{5} \cdot \frac{C B}{B E}=2 \sqrt{5}
\end{aligned}
$$

Note $\triangle C P F \sim \triangle D P C$ by $A A$

$$
\begin{aligned}
& \Rightarrow \frac{C P}{D P}=\frac{P F}{P C} \\
& \Rightarrow \quad D P=4 \sqrt{5}
\end{aligned}
$$

Using Pythagoras we get $C D=10$

$$
\begin{aligned}
\text { Area of } \mathrm{DPC} & =\frac{D P \times P C}{2}=\frac{4 \sqrt{5} \times 2 \sqrt{5}}{2}=40 \\
& =\frac{C D \times P G}{2}=\frac{10 \times P G}{2} \\
\Rightarrow P G=4 & =D H .
\end{aligned}
$$

Using Pythagoras we get $D G=8=P H \Rightarrow A H=6$ and $P H=8$ Using Pythagoras we get $A P=10$

25. Consider diametric opposite point A^{*}

Join $B A^{*}$ and $C A^{*}$
Note $m \angle A B A^{*}=m \angle A C A^{*}=90$
$\overline{B H} \perp \overline{A C}$ and $\overline{A^{*} C} \Rightarrow \square H B A^{*} C$ is parallelogram.
$\Rightarrow A^{\prime}$ is mid point of $\overline{H A^{*}}$ and $\overline{B C}$.
\Rightarrow By midpoint theorem $O A^{\prime}=\frac{1}{2} A H$ and both are perpendicular to $B C$
As in the given problem $m \angle A=60, m \angle B O C=120, O B=O C=5 \sqrt{3}$.
Note $\triangle O A^{\prime} B=$ is $30-60-90$
$\Rightarrow O A^{\prime}=\frac{5 \sqrt{3}}{2} ; \quad B A^{\prime}=\frac{15}{2} ; \quad B C=15$
$[A B C]-[A B C]=\frac{B C(A D-H D)}{2}=\frac{B C \cdot A H}{2}$
We note $A H=2 O A^{\prime}=2 \times 5 \sqrt{3} \Rightarrow[A B C]-[H B C]=15 \times 5 \sqrt{3}=75 \frac{\sqrt{3}}{2}$
\therefore Required answer $=75$

26. Drop \perp from A on $\overline{B C}$. Let the foot be D.

Note $A D^{2}+B D^{2}=A B^{2}$
$\Rightarrow A D^{2}=7^{2}-\frac{(49)^{2}}{193}=\frac{9457-240)}{193}=\frac{7056}{193} \Rightarrow A D=\frac{84}{\sqrt{193}}$
Note $\triangle A B C \sim \triangle D B A$
$\Rightarrow \frac{A B}{B C}=\frac{D B}{B A} \Rightarrow D B \cdot B C=A B^{2}$
$\Rightarrow B C=\frac{A B^{2}}{D B}=49 \times \frac{\sqrt{193}}{49}=\sqrt{193}$
Also $\Rightarrow \frac{A C}{B C}=\frac{D A}{B A} \Rightarrow A C=\frac{D A}{B A} B C=\frac{84}{\sqrt{193}} \cdot \sqrt{193} \cdot \frac{1}{7}=12$

27. Consider $\left(x+b_{1} y+c_{1}\right) \times\left(x+b_{2} y+c_{2}\right)$
$=x^{2}+\left(b_{1}+b_{2}\right) x_{2}+\left(b_{1} b_{3}\right) y^{2}+\left(c_{1}+c_{2}\right) x+\left(b_{2} c_{2}+b_{2} c_{1}\right) y+c_{1} c_{2}$
Two polynomials are equal if corresponding coefficients are equal.
$b_{1}+b_{2}=1$ and $b_{1} b_{2}=-2$

$$
\begin{aligned}
& \Rightarrow b_{1}=2 \text { and } b_{2}=-1 \\
& \Rightarrow\left(x_{1}+2 y+c_{1}\right)\left(x-y+c_{2}\right) \\
& =x^{2}+x y-2 y^{2}+\left(c_{1}+c_{2}\right) x+\left(2 c_{2}-c_{1}\right)+c_{1} c_{2}=0 \\
& \Rightarrow c_{1}+c_{2}=8 \text { and } c_{1} c_{2}=-9
\end{aligned}
$$

We have to find values of $2 c_{2}-c_{1}$
Case 1: $c_{1}=9, c_{2}=-1$ then $2 c_{2}-c_{1}=-11=9$
Case 2: $C_{1}=-1, c_{2}=9$ then $2 C_{2}-c_{1}=19=9$
So sum of all values of $a=19-11=8$
28. To find first root of cubic equation, we should try $0, \pm 1, \pm 2, \pm 3$ etc. Note given cubic becomes zero if we put value of $x=3$.

$$
\begin{aligned}
\Rightarrow x^{3}-9 x^{2} & -37 x+165=(x-3)\left(x^{2}-6 x-55\right) \\
& =(x-3)(x-11)(x+5)
\end{aligned}
$$

Roots of given cubic are $-5,3,11$.
Note that they are in an AP. With first term -5 and common difference 8.
Sum of first 40 terms is

$$
\begin{aligned}
& S_{10}=\frac{10}{2}(2(-5)+(10-1) 8) \\
& =310=10 T \\
& \Rightarrow T=31
\end{aligned}
$$

29. Multiplying first equation by $(1-k)$

$$
\begin{aligned}
(1-k) x+(1-k)(1+k) y & =0 \ldots \ldots(1) \\
(1-k) x+k y & =1+k-(2)
\end{aligned}
$$

(2) $-(1) \Rightarrow\left[k-\left(1-k^{2}\right)\right] y=1+k$

$$
\Rightarrow \quad y=\frac{1+k}{k^{2}+k-1}
$$

Putting in first equation we get

$$
x=\frac{-(1+k)(1+k)}{k^{2}+k-1}
$$

Putting these values in third equation

$$
\begin{aligned}
& (1+k)\left[\frac{-(1+k)(1+k)}{k^{2}+k-1}\right]+(12-k)\left[\frac{1+k}{k^{2}+k-1}\right]=-(1+k) \\
\Rightarrow & -(1+k)^{3}+(12-k)(1+k)+(1+k)\left(k^{2}+k-1\right)=0 \\
\Rightarrow & \left.(1+k)(-1+k)^{2}+(12-15)+k^{2}+k-1\right)=0 \\
\Rightarrow & (1+k)\left(-k^{2}-2 k-1+12-k+k^{2}+k-1\right)=0 \\
\Rightarrow & (1+k)(-2 k+10)=0 \Rightarrow k=5, \text { as } \mathrm{k}=-1 \text { is not positive } \\
& x=\frac{-25}{29}, y=\frac{5}{29} \Rightarrow y-x=\frac{30}{29} \therefore \text { Ans }=30
\end{aligned}
$$

30. Given $x^{2}-3 x+1=0$

$$
\begin{aligned}
& \Rightarrow x+x^{2}+1=3 x \\
& \Rightarrow x+\frac{1}{x}=3 \text { if } x \neq 0 .
\end{aligned}
$$

To find value of k, rearrange

$$
\begin{aligned}
& \quad x^{12}+1=7 k x^{6} \\
& \\
& \Rightarrow x^{6}+\frac{1}{x^{6}}=7 k \\
& \text { Consider }\left(x+\frac{1}{x}\right)^{3}=27 \\
& \Rightarrow x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)=27 \\
& \Rightarrow x^{3}+\frac{1}{x^{3}}+3 \times 3=27 \\
& \Rightarrow x^{3}+\frac{1}{x^{3}}=18 \\
& \Rightarrow\left(x^{3}+\frac{1}{x^{3}}\right)^{2}=x^{6}+\frac{1}{x^{6}}+2=18^{2}=324 . \\
& \Rightarrow x^{6}+\frac{1}{x^{6}}=324-2=322=7 k \\
& \quad \Rightarrow k=46
\end{aligned}
$$

