Physics Solution-2016

14. For first particle, $X: \frac{d}{2}$ is traveled at $30 \mathrm{~km} / \mathrm{hr}$ in time t_{1}

Remaining $\frac{d}{2}$ at $45 \mathrm{~km} / \mathrm{hr}$ in time t_{2}
$\frac{\text { Dist }}{\text { Speed }}=\frac{d}{2 \times 30 \mathrm{~km} / \mathrm{hr}}=t_{1}$
$\frac{d}{2 \times 45 \mathrm{~km} / \mathrm{hr}}=\frac{d}{90}=t_{2}$
Total time given is $2 h r s=t_{1}+t_{2}$
$\frac{d}{60}+\frac{d}{90}=2$
$\rightarrow d=72 \mathrm{~km} \cdots(1)$
For second particle, Y : using $s=u t+\frac{1}{2} a t^{2}$ (Kinematic Equation)
where $u=0 \quad s=72(\operatorname{By}(1))$ and $t=2 h r s \rightarrow 72=\frac{1}{2} \times a \times 42$
$a=36 \mathrm{~km} / \mathrm{hr}^{2}$
for Y , time required to attain $45 \mathrm{~km} / \mathrm{hr}$ at $a=36$ is (using $v=u+a t ; u=0$)
$45=36 \times t$
$\therefore t=\frac{5}{4} h r s=75$ minutes
Ans: 75
15. Draw FBD (Free Body Diagram) for both blocks separately

For 2 kg block: for maximum tension condition,
Weight, W (downwards) $=\mathrm{mg}=20 \mathrm{~N}$ and
T (upwards) $=$ Tension in the rope (Uniform since the rope is light) $=80 \mathrm{~N}$ (Given)
$\therefore F_{n e t}=T-W=60 \mathrm{~N}$
$\therefore a=\frac{F_{n e t}}{m}=30 \mathrm{~m} / \mathrm{s}^{2}$
The rope is inextensible \rightarrow both blocks experience same acceleration
Now for 0.2 kg block: for maximum tension condition,
Weight, W (downwards) $=\mathrm{mg}=2 \mathrm{~N}$ and
Tension, T (downwards) $=80 \mathrm{~N}$
external force, F (upwards), and
$a=30 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore F_{n e t}=m a=6 \mathrm{~N}$ and is acting upwards
But $F_{n e t}=F-(T+W)$
$\therefore F=F_{n e t}+(T+W)=88 \mathrm{~N}$
Ans: 88
16. Initial distance between plates is 20 m .

As both are moving towards each other with $5 \mathrm{~m} / \mathrm{s}$, the relative velocity between two plates is $10 \mathrm{~m} / \mathrm{s}$
Time required to cover distance of $20 \mathrm{~m}=\frac{20}{10}=2 \mathrm{~s}$.
Hence the ball is travelling for 2 s only with constant sspeed of $25 \mathrm{~m} / \mathrm{s}$.
So it will travel $2 \times 25=50 \mathrm{~m}$.
Ans: 50
17. Using cartesian sign convention:

For 1st convex lens, $u=-8 \mathrm{~cm}, f=+10 \mathrm{~cm}$. Object size $=21 \mathrm{~mm}$
Using Len's Formula: $\frac{1}{v}=\frac{1}{f}+\frac{1}{u}$
$\therefore \frac{1}{v}=\frac{1}{10}-\frac{1}{8}=\frac{-1}{40}$
$\therefore v=-40 \mathrm{~cm}$ which means image will form to left of 1st lens
Magnification by 1 st lens $=\frac{-v}{u}=-\frac{(-40)}{8}=5$
\therefore size of image $=5 \times 21 \mathrm{~mm}$ (original size) $=105 \mathrm{~mm}$.
This image by 1 st lens will act as object for second lens.
For 2nd convex lens, $u=-(40+10)=-50 \mathrm{~cm}, f=+20 \mathrm{~cm}$ and object size $=105$ mm
Using Len's Formula: $\frac{1}{v}=\frac{1}{f}+\frac{1}{u}$
$\frac{1}{V}=\frac{1}{20}-\frac{1}{50}=\frac{3}{100}$
$\therefore v=+\frac{100}{3} \mathrm{~cm}$
Magnification by 2nd lens $=\frac{-v}{u}=\frac{-(100 / 3)}{50}=\frac{-2}{3}$
\therefore Final size $=\frac{2}{3} \times 105 \mathrm{~mm}=70 \mathrm{~mm}$.
Ans: 70
18. Consider the circuit

Let $48 \sqrt{3}=x$
In the circuit, x is in series with R giving resistance $(x+R)$,
$(x+R)$ is in parallel with R, giving
Resistance $=\frac{R(x+R)}{R+(x+R)}$
This resistance is in series with R giving total resistance of circuit as $=R+\frac{R(x+R)}{2 R+x}$
But resistance of circuit is given as x,
$\therefore x=\frac{R(2 R+x)+R(x+R)}{2 R+x}$
$x(2 R+x)=R[(2 R+x)+(x+R)]$
$2 R x+x^{2}=R[3 R+2 x]$
$2 R x+x^{2}=3 R^{2}+2 x R$
$x^{2}=3 R^{2}$
$48 \times 48 \times 3=3 \times R^{2} \therefore R=48 \Omega$
Ans: 48
19. Let the speed of the bus be $V \mathrm{~km} / \mathrm{h}$, Speed of cyclist is $20 \mathrm{~km} / \mathrm{h}$
T is time in minutes between start of two buses at A or B
Relative speed of the bus stating from A, as seen by the cyclist $=(V-20) \mathrm{km} / \mathrm{h}$,
Relative speed of the bus starting from B as seen by the cyclist $=(v+20) \mathrm{km} / \mathrm{h}$
Distance between 2 buses starting from $A=\frac{18}{60}(V-20) \mathrm{km}$
Distance between 2 buses starting from $B=\frac{6}{60}(V+20) \mathrm{km}$
However in both cases, distance between two buses is the same $=V\left(\frac{T}{60}\right) \mathrm{km}$
$\therefore \frac{6}{60}(V+20)=\frac{18}{60}(V-20)=V \frac{T}{60}$
$V+20=3 V-60$ which gives $V=40$.
Substituting for V and solving for T,
$6(40+20)=40 T$
$\therefore T=9 \mathrm{~min}$
Ans: 9
20. Consider the circuit

The current in the circuit is 2 A , and Voltage of source is 120 V
therefore Total resitsnace of circuit $=\frac{V}{I}=\frac{120}{2}=60 \Omega$
Now, current flowing through R_{2} is 2 A ,
Voltage acrooss R_{2} is 40 V ,
$\therefore R_{2}=\frac{V}{I}=20 \Omega$
Equivalent Resistance of R_{1} in parallel with 20Ω resistor is $=\frac{20 R_{1}}{20+R_{1}}$
Total Resistance in the circuit is
$25 \Omega+20 \Omega+\frac{20 R_{1}}{20+R_{1}} \Omega=60 \Omega$
$60=45+\frac{20 R_{1}}{20+R_{1}}$
$15\left(20+R_{1}\right)=2 R_{1}$
$300+15 R_{1}=20 R_{1}$
$300=5 R_{1}$
$R_{1}=60 \Omega$
Ans: 60
21. Heat generated during 1 st half of the fall for raindrop $=$ loss in mechanical energy during the motion
Heat generated $=$ Loss in ME $=$ Loss in $\mathrm{PE}+$ loss in KE,
Note that loss in KE will be negative as velocity of raindrop increases during this motion
Heat generated $=m g\left(h_{2}-h_{1}\right)-\frac{1}{2} m V^{2}$
$=0.01 \times 10 \times(500-250)-\frac{1}{2} \times 0.01 \times 10^{2}$
$=25-0.5 \mathrm{~J}=24.5 \mathrm{~J}$. Nearest integer is 25
Ans: 25
22. Given: $F=100 N \quad u=0 \quad m=400 \mathrm{~kg}$
$\mathrm{F}=\mathrm{ma}$
$\therefore 100=400 \times a$
$\therefore a=\frac{100}{400}=0.25 \mathrm{~m} / \mathrm{s}^{2}$
As $\mathrm{v}=\mathrm{u}+$ at (kinematic equation),
v after $3 \mathrm{~s}=0+0.25 \times 3=0.75 \mathrm{~m} / \mathrm{s}$

Power $=$ F.v
$\therefore p=100 \times 0.75=75 \mathrm{watt}$
Ans: 75
23. Given: Refractive indices $\eta_{\text {air }}=1$ and $\eta_{\text {liquid }}=\sqrt{5}$
diameter of disc $=66 \mathrm{~m}$ and point source is 33 mm above its center
Considering the light ray touching the disc's circumference,
It makes angle of 45°
Using Snell's law for refraction at air-water interface
$\eta_{\text {air }} \sin 45^{\circ}=\eta_{\text {liquid }} \sin r$
$\therefore \frac{1}{\sqrt{2}}=\sqrt{5} \cdot \sin r$
$\therefore \sin r=\frac{1}{\sqrt{10}}$
$\therefore \cos r=\sqrt{1-\frac{1}{10}}=\frac{3}{\sqrt{10}}$
$\therefore \tan r=\frac{\sin r}{\cos r}=\frac{1}{3}$
It can be seen that,
$\tan r=\frac{\text { The extra radius of shadow (other than disc itself) }}{\text { The depth of the water }}$
The depth is 33 mm , hence we get extra radius of shadow as 11 mm
\therefore The total diameter of shadow is $11+66+11=88 \mathrm{~mm}$
Ans: 88
24. For upward motion

While going upwards as both forces (friction and weight) act downwards, acceleration $=g+\frac{g}{5}=\frac{6 g}{5}$ and is acting downwards
Let initial speed be u and T_{1} be total time for upward travel, final speed $\mathrm{v}=0$.
$\therefore 0=\mathrm{u}+\mathrm{a} T_{1}$
$\therefore u=\frac{6 g}{5} \times T_{1}$
$\therefore T_{1}=\frac{5 u}{6 g}$
Height reached during upward motion H can be derived using $v^{2}=u^{2}+2$ as
$\therefore 0=u^{2}+2 \times-\left(\frac{6 g}{5}\right) \times H$
$\therefore H=\frac{5 u^{2}}{12 g}$
For downward motion; acceleration $=g-\frac{g}{5}=\frac{4 g}{5}$ and is acting downwards using $s=u t+\frac{1}{2} a t^{2}$, where $s=-H, u=0, t=T_{2}$
$-H=0+\frac{1}{2} \times-\left(\frac{4 g}{5}\right) \times\left(T_{2}\right)^{2}$
$\therefore \frac{5 u^{2}}{12 g}=\frac{2 g}{5} T_{2}^{2}$
$\therefore T_{2}^{2}=\frac{25 u^{2}}{24 g^{2}}$
Now, $\mathrm{N}=30 \times\left(\frac{T_{1}}{T_{2}}\right)^{2}$
$\therefore N=30 \times \frac{25 u^{2}}{36 g^{2}} \times \frac{24 g^{2}}{25 u^{2}}$
$\therefore N=20$
Ans: 20
25. Consider the figure

When pendulum is taken up through 60°,
increases in potential energy $=m g L\left(1-\cos 60^{\circ}\right)=1 \times 10 \times 2 \times\left[1-\frac{1}{2}\right]$
$=\frac{2}{10} \times 2[1-1 / 2]=10 \mathrm{~J}$
When pendulum reaches lowest point, loss in $\mathrm{PE}=$ gain in KE
$\frac{1}{2} \times m \times V^{2}=\frac{1}{2} \times 1 \times V^{2}=10$
$\therefore V=\sqrt{20}$ i.e. $V=2 \sqrt{5}$
M_{1} collides with stationary M_{2}, after collision M_{1} is stationary and M_{2} moves with V_{2}
Conserving linear momentum during collision,
$1 \times 2 \sqrt{5}=\frac{2}{10} \times V_{2}$
$\therefore V_{2}=10 \sqrt{5}$
for motion of M_{2} up the curve, applying conservation of mechanical energy $\frac{1}{2} m v^{2}($ loss in KE $)=m g h($ gain in PE)
$\therefore \frac{1}{2} \times \frac{2}{20} \times(10 \sqrt{5})^{2}=\frac{2}{10} \times 10 \times h$
$\therefore h=25 \mathrm{~m}$
Ans: 25
26. Acceleration due to gravity of planet, $a_{p}=\frac{m_{p} \times G}{\left(r_{p}\right)^{2}}=6.7 \mathrm{~m} / \mathrm{s}^{2}$ (given)
$\therefore 6.7 \mathrm{~m} / \mathrm{s}^{2}=\frac{m_{p} \times 6.7 \times 10^{-11}}{\left(4700 \times 10^{3}\right)^{2}}$
$\therefore m_{p}=2209 \times 10^{21} \mathrm{~kg}=2209 \times 10^{24} \mathrm{gm}$
Density $=\frac{\text { Mass }}{\text { Volume }}$
\therefore Density $=\frac{2209 \times 10^{24} \mathrm{~g}}{\frac{4}{3} \times \frac{22}{7} \times\left(42 \times 10^{7}\right)^{3} c c}$
\therefore Density $=6 \mathrm{gm} / \mathrm{cc}$

Ans: 6

Physics Solution-2015

14. Displacement $S=A-B t+C t^{2} \therefore S=6-3 t+t^{2}$

Differentiating w.r.t. to t , we get Velocity $\mathrm{V}=-3+2 \mathrm{t}$
Furtherdifferentiatingw.r.t.tot, wegetAccelerationA $=2$
At $\mathrm{t}=4, \mathrm{~V}=-3+2(4)=5 \mathrm{~m} / \mathrm{s}$
$A t t=4, A=2 \mathrm{~m} / \mathrm{s}^{2}$
Force on the body $=m a=4 \times 2=8 \mathrm{~N}$
Power delivered $=F . V$
$\therefore P=8 \times 5=40 \mathrm{~W}$
Ans: 40
15. A constant force acts, hence constant acceleration.

By Newton's second law, $a=\frac{F}{m}=\frac{F}{2}$
Using, $v^{2}=u^{2}+2$ as, where $v=6 \mathrm{~m} / \mathrm{s}, u=0 \mathrm{~m} / \mathrm{s}$ and $s=2 \mathrm{~m}$
$36=2 \times \frac{F}{2} \times 2$
$\therefore F=18 \mathrm{~N}$
Ans: 18
16. Given, frequency of throw is $2 \mathrm{balls} / \mathrm{sec}$.
$\therefore 1$ ball is thrown after $1 / 2 \mathrm{sec}$.
\therefore any ball reaches the top in $1 / 2$ sec.
For upward motion of $1 / 2 \mathrm{sec}$,
$u=$ initial velocity, $v=$ final velocity $=0$ and $\mathrm{a}=-10 \mathrm{~m} / \mathrm{s}^{2}$.
$v=u+a t$
$\therefore u=\frac{1}{2} \times 10=5 \mathrm{~m} / \mathrm{s}$
To get height attained, $v^{2}=u^{2}+2$ as
$\therefore s=\frac{u^{2}}{2 g}=\frac{25}{2 \times 10}=1.25 \mathrm{~m}$
\therefore Height $\mathrm{H}=s=125 \mathrm{~cm}$, so $\frac{H}{5}=25$
Ans: 25
17. Consider the figure

Given, $M_{1}=1 \mathrm{~kg}, M_{2}=2 \mathrm{~kg}, u=4 \mathrm{~m} / \mathrm{s}, d=20 \mathrm{~cm}$ M_{1} moves with $4 \mathrm{~m} / \mathrm{s}$ towards right and collides with M_{2} at rest By conservation of linear momentum,
$M_{1} u_{1}+M_{2} u_{2}=M_{1} V_{1}+M_{2} V_{2}$
$\therefore 1 \times 4+2 \times 0=1 \times 0+2 \times V_{2}$
$\therefore 4=2 \times V_{2}$
$\therefore V_{2}=2 \mathrm{~m} / \mathrm{s}$.
After collision, M_{2} begins to move with $2 \mathrm{~m} / \mathrm{s}$ and stops after traveling a distance
20 cm .
Using $v^{2}=u^{2}+2$ as, we get
$0=(2)^{2}+2 \times a \times 0.2$
$\therefore O=4+0.4 a$
$\therefore a=\frac{-4}{0.4}=-10 \mathrm{~m} / \mathrm{s}^{2}$.
Frictional force $=m a=2 \times 10=20 \mathrm{~N}$
Ans: 20
18. Consider given circuit,

R_{2} and R_{3} are in parallel and this combination is in turn in series with R_{1}.
\therefore Resistance of the circuit $R_{T}=R_{1}+\frac{R_{2} \times R_{3}}{R_{2}+R_{3}}$
$\therefore R_{T}=5+\frac{2}{3}=\frac{17}{3}$
In the circuit, current through battery, $I=\frac{V}{R_{T}}=\frac{68}{17 / 3}=12 \mathrm{~A}$.
$\therefore 12 \mathrm{~A}$ current is passing through R_{1}.
\therefore Voltage drop across $R_{1}=I R_{1}=12 \times 5=60 \mathrm{~V}$.
\therefore Potential difference across R_{2} or R_{3} is $68-60=8 \mathrm{~V}$.
\therefore Power dissipated in $R_{2}=\frac{V^{2}}{R_{2}}=\frac{(8)^{2}}{2}=32 \mathrm{~W}$
Ans: 32
19. Please refer to figure

Slab's refractive index is $\sqrt{3}$. Applying Snell's law at point A:
$1 \times \sin \theta=\sqrt{3} \times \sin r$
$\therefore \frac{\sqrt{3}}{2}=\sqrt{3} \times \sin r$
$\therefore \frac{1}{2}=\sin r$ i.e. $\angle r$ or $\angle \mathrm{BAC}=30^{\circ}$
$\therefore \angle \mathrm{CAD}=\theta-r=60^{\circ}-30^{\circ}=30^{\circ}$
Consider $\triangle \mathrm{ABC}$:
$\cos r=\cos 30^{\circ}=\frac{\sqrt{3}}{2}=\frac{A B}{A C}=\frac{t}{A C}$
$\therefore \frac{\sqrt{3}}{2}=\frac{17 \sqrt{3}}{A C}$
$\therefore A C=34$
Consider $\triangle \mathrm{ACD}$:
$\sin (\theta-r)=\sin 30^{\circ}=\frac{1}{2}=\frac{C D}{A C}=\frac{d}{A C}$
$\therefore \frac{1}{2}=\frac{d}{34} \quad \therefore d=17$
Ans: 17
20. Using cartesian sign convention:

For 1st convex lens, $u=-40 \mathrm{~cm}, f=+30 \mathrm{~cm}$.
Using Len's Formula: $\frac{1}{v}=\frac{1}{f}+\frac{1}{u}$
$\therefore \frac{1}{v}=\frac{1}{30}-\frac{1}{40}=\frac{-1}{120}$
$\therefore v=+120 \mathrm{~cm}$ which means image will form to right of 1st lens
This image by 1 st lens will act as object for second lens.
For 2nd concave lens, $u=-(140-120)=-20 \mathrm{~cm}, f=-20 \mathrm{~cm}$
Using Len's Formula: $\frac{1}{v}=\frac{1}{f}+\frac{1}{u}$
$\frac{1}{v}=-\frac{1}{20}-\frac{1}{20}=-\frac{2}{20}$
$\therefore v=-10 \mathrm{~cm}$ i.e. image will be at 10 cm from concave lens on left side
Ans: 10
21. Capacity of bowl, $V=300 \mathrm{cc}$ and mass of bowl $=236 \mathrm{gm}$

Using Archimedes Principle: for floating system, $F_{\text {buoyant }}$ i.e weight of water dis-
placed $=$ weight of system
$\therefore F_{\text {buoyant }}=$ Volume of water displaced \times density $\times g=$ Total mass of system $\times g$
Maximum volume of water displaced $=$ capacity of bowl $=300 \mathrm{cc}$
Total mass of system $=$ mass of bowl + mass of oil
$\therefore 300 \times 1$ (density of water) $=236+$ mass of oil
\therefore mass of oil $=64 \mathrm{~g}=$ Volume of oil \times density
\therefore volume of oil $=\frac{64}{0.8}=80 \mathrm{cc}$
Ans: 80
22. Draw 2 separate FBDs, 1 for entire system of 3 blocks and FBD for block A

For system of 3 blocks:
Total mass $=4+3+1=8 \mathrm{~kg}$
$a=\frac{F}{m}=\frac{48}{8}=6 \mathrm{~m} / \mathrm{s}^{2}$
This acceleration is same for all 3 blocks.
Now for block A :
its acceleration is $6 \mathrm{~m} / \mathrm{s}^{2}$
$F_{\text {net }}$ on block $A=\mathrm{ma}=4 \times 6=24 \mathrm{~N}$
2 horizontal forces are acting on block A, External force, F and force applied by B on A
\therefore force applied by B on $A=F-F_{n e t}=48-24=24 \mathrm{~N}$
Ans: 24
23. Draw FBD of the elevator

2 forces are acting on elevator, its weight acting downwards ($=\mathrm{mg}$) and tension in the cable, T acting upwards
It is accelerating upwards with $\mathrm{a}=-2 \mathrm{~m} / \mathrm{s}^{2} \therefore F_{n e t}=m a=700 \times 2$
But $F_{n e t}=m g-T$
$\therefore(700)(10)-T=(700)(2)$
$\therefore T=(700)(8)=56 \times 10^{2} \mathrm{~N}$
Ans: 56
24. $g=\frac{G M}{R^{2}}$

Let mass of the astronaut $=\mathrm{m}$
Weight on earth $=m \times g_{\text {earth }}=m \frac{G \times M_{\text {earth }}}{R_{\text {earth }}^{2}}=120$
$\therefore m=\frac{120 \times R_{\text {earth }}^{2}}{G \times M_{\text {earth }}}$
Weight on mars $=m \times g_{\text {mars }}=m \frac{G \times M_{\text {mars }}}{R_{\text {mars }}^{2}}=k($ say $)$
$\therefore m=\frac{k \times R_{\text {mars }}^{2}}{G \times M_{\text {mars }}}$
$\therefore \frac{120 \times R_{\text {earth }}^{2}}{G \times M_{\text {earth }}}=\frac{k \times R_{\text {mars }}^{2}}{G \times M_{\text {mars }}}$
$\therefore k=120 \times\left(\frac{M_{\text {mars }}}{M_{\text {earth }}}\right) \times\left(\frac{R_{\text {earth }}^{2}}{R_{\text {mars }}^{2}}\right)$
$\therefore k=120 \times\left(\frac{1}{10}\right) \times\left(\frac{2}{1}\right)^{2}$
$\therefore k=\frac{120 \times 4}{10}=48$
Ans: 48
25. Given $A=\frac{100}{\pi} \mathrm{~cm}^{2}=\frac{1}{100 \pi} \mathrm{~m}^{2}$
$N=100$ turns, $f=50 \mathrm{~Hz}, B=0.1$ Tesla, $t=\frac{1}{40} \mathrm{sec}$
Formula: $V=2 \pi f N A B \sin (2 \pi f t)$
Substitute given values generated
$V=2 \pi \times 50 \times 100 \times \frac{1}{100 \pi} \times 0.1 \times \sin \left(2 \pi \times 50 \times \frac{1}{40}\right)$ volts
$\therefore V=10 \times \sin \left(\frac{5 \pi}{2}\right)=10 \times 1=10$ volts
Ans: 10
26. consider the figure

Particle travels down the slope of A and then travels up the slope of B
Using conservation of mechanical energy,
PE at top of $A=\mathrm{PE}$ at top of B
$\therefore m g h_{A}=m g h_{B}$, hence $h_{B}=5 \mathrm{~m}$
Oscillation motion of the particle can be considered to be composed of:
down the length of slope of $A\left(S_{A}\right)$, then up the length of slope of $B\left(S_{B}\right)$, then down the slope S_{B} and then up the slope S_{A}
Since no friction present, time required for moving along S_{A} is same while going upwards or downwards
Also, time required for moving along S_{B} is same while going upwards or downwards So we will calculate time required for downward motion for both the slopes
For slope $S_{A}, u=0 \mathrm{~m} / \mathrm{s}$,
$\mathrm{s}=\frac{h_{A}}{\sin 37^{\circ}}=\frac{5}{0.6}=\frac{25}{3} \mathrm{~m}$ and
$\mathrm{a}=g \sin 37^{\circ}=10 \times 0.6=6 \mathrm{~m} / \mathrm{s}^{2}$
$s=u t+1 / 2 a t^{2} \therefore \frac{25}{3}=\frac{1}{2} \times 6 \times t^{2}$
$\therefore t_{A}=5 / 3 \mathrm{sec}$
For slope $S_{B}, u=0 \mathrm{~m} / \mathrm{s}$,
$\mathrm{s}=\frac{h_{B}}{\sin 54^{\circ}}=\frac{5}{0.8}=\frac{25}{4} \mathrm{~m}$ and
$\mathrm{a}=g \sin 54^{\circ}=10 \times 0.8=8 \mathrm{~m} / \mathrm{s}^{2}$
$s=u t+1 / 2 a t^{2} \therefore \frac{25}{4}=\frac{1}{2} \times 8 \times t^{2}$
$\therefore t_{B}=5 / 4 \mathrm{sec}$
$\mathrm{T}=$ time period for 1 complete oscillation $=t_{A}+t_{B}+t_{B}+t_{A}$
$\therefore 5 T=5 \times 2\left(\frac{5}{3}+\frac{5}{4}\right)=10\left(\frac{35}{12}\right)=29.166$
Ans: 29

Physics Solution-2014

1. $v^{2}=\frac{3 R T}{M}$

Checking for units, v^{2} is in $\mathrm{m} / \mathrm{s}^{2}=\frac{\text { Joule }}{\text { Mole } \times \text { kelvin }} \times \frac{\text { kelvin }}{\text { gram } / \text { mole }}$
$=\frac{\text { Joule }}{\text { Gram }}=\frac{\mathrm{kg}}{\text { Gram }} \times \frac{\mathrm{m}^{2}}{s^{2}}=\frac{10^{3} \times \operatorname{Gram}}{\text { Gram }} \times \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}=10^{3} \times \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}$.
\therefore we get $v^{2}=10^{3} \times \frac{3 R T}{M}$, where M is expressed in gram $/ \mathrm{mole}$
Substituting given values in the formula, we get
$v^{2}=10^{3} \times \frac{3 \times 8.4 \times 300}{25}$
$v^{2}=10^{5} \times \frac{3 \times 8.4 \times 3}{25}=3.024 \times 10^{5}$
$\therefore \mathrm{n}=5$
Ans: 5
2. For $2^{\text {nd }}$ stone:
$u_{2}=0, t_{2}=1.5 \mathrm{sec}$ and $a=g=-10 \mathrm{~m} / \mathrm{s}^{2}$
$s_{2}=u_{2} t_{2}+\frac{1}{2} a t_{2}^{2}$
$\therefore s_{2}=-5(1.5)^{2}=-5(2.25) \mathrm{m}$
For $1^{\text {st }}$ stone dropped 2 sec earlier to $2^{\text {nd }}$ stone:
$u_{1}=0, t_{1}=2+1.5=3.5 \mathrm{sec}$ and $a=g=-10 \mathrm{~m} / \mathrm{s}^{2}$
$s_{1}=u_{1} t_{1}+\frac{1}{2} a t_{1}^{2}$
$\therefore s_{1}=-5(3.5)^{2}=-5(12.25) \mathrm{m}$
$\mathrm{D}=$ distance between the stones $=s_{1}-s_{2}$, taking numerical values
$\therefore \mathrm{D}=5(12.25)-5(2.25)=5(10)=50 \mathrm{~m}$
Ans: 50
3. The buoy after being dropped in water moves downstream with speed of water For boat going upstream,
speed of boat $=7 \mathrm{~m} / \mathrm{s}$ and speed of water $=3 \mathrm{~m} / \mathrm{s}$
\therefore speed of boat w.r.t. banks $=7-3=4 \mathrm{~m} / \mathrm{s}$ (as it is going against the water) distance $=4.2 \mathrm{~km}=4200 \mathrm{~m}$
\therefore Time $t_{u p}=\frac{\text { Distance }}{\text { Speed }}=\frac{4200}{4}=1050 \mathrm{sec}$

During this time buoy has travelled $1050 \times 3=3150 \mathrm{~m}$
Hence it is at $4200+3150=7350 \mathrm{~m}$ away from the boat ater time, $t_{u p}$
For boat going downstream,
speed of boat $=7 \mathrm{~m} / \mathrm{s}$ and speed of water $=3 \mathrm{~m} / \mathrm{s}$
\therefore speed of boat w.r.t. banks $=7+3=10 \mathrm{~m} / \mathrm{s}$ (as it is going with the flow of water)
Let the buoy travel distance x with speed $3 \mathrm{~m} / \mathrm{s}$ before the boat catches up
$x=$ Speed \times time $=3 \times t_{\text {buoy }}$
for boat, $t_{\text {down }}=\frac{\text { Distance }}{\text { Speed }}=\frac{7350+x}{10}$
but $t_{\text {buoy }}=t_{\text {down }}$
$\therefore t_{\text {down }}=\frac{7350+3 \times t_{\text {buoy }}}{10}$
$\therefore 7 \times t_{\text {down }}=7350 \therefore t_{\text {down }}=1050 \mathrm{sec}$
Total time $T=t_{\text {up }}+t_{\text {down }}=1050+1050=2100=21 \times 10^{2} \mathrm{sec}$
Ans: 21
4. Weighing scale measures the Normal reaction (N) between the object and the scale When the lift is at rest, Normal reaction, N balances weight of the object
$\therefore N_{\text {rest }}=m g=50 \times 10=500$
However the scale shows value $N / g=50$ when lift is at rest
While lift is going downwards:
$F_{n e t}=W-N=500-(N / g) \times g=500-48 \times 10=20 \mathrm{~N}$
but $a_{l i f t}=\frac{F_{n e t}}{m}=\frac{20}{50}=0.4 \mathrm{~m} / \mathrm{s}^{2}=40 \mathrm{~cm} / \mathrm{sec}^{2}$
Ans: 40
5. Mass of ball $=1 \mathrm{~kg}$, Height from which it is thrown $=280 \mathrm{~m}$

Total mechanical energy at highest point $=$ Potential energy of ball
PE at height $h=m g h=1 \times 10 \times 280=2800 \mathrm{~J}$.
Since ball comes to rest (no KE) on ground, all of PE is lost
Mechanical energy lost $=2800 \mathrm{~J}$.
Heat absorbed $=$ Mass \times Specific Heat Capacity \times Change in Temperature .
$\therefore 2800=1 * 400 * \triangle T$
$\therefore \Delta T=\frac{2800}{400}=07^{\circ} \mathrm{C}$
Ans: 07
6. Lets consider direction of velocity as positive if moving to right and negative if it is to the left.
$\therefore u_{1}=+2 \mathrm{~m} / \mathrm{s}, u_{2}=-7 \mathrm{~m} / \mathrm{s}, m_{1}=2 \mathrm{~kg}, m_{2}=1 \mathrm{~kg}$
After collision, the combined ball of mass $m=3 \mathrm{~kg}$ moves with velocity say v.
By law of conservation of linear momentum,
$m_{1} u_{1}+m_{2} u_{2}=m v$
$\therefore(2 \times 2)+(1 \times(-7))=3 v$
$\therefore v=\frac{4-7}{3}=-1 \mathrm{~m} / \mathrm{s}$
Initial Kinetic energy $=\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}$
$=\left(\frac{1}{2} \times 2 \times 4\right)+\left(\frac{1}{2} \times 1 \times 49\right)=(4)+\left(\frac{49}{2}\right)$
$=\frac{57}{2} \mathrm{~J}$
Final kinetic energy $=\frac{1}{2} m v^{2}=\frac{1}{2} \times 3 \times 1=\frac{3}{2} \mathrm{~J}$
Kinetic energy lost $=$ Initial KE - final KE
$=\frac{57}{2}-\frac{3}{2}=\frac{54}{2}=27 \mathrm{~J}$
Ans: 27
7. The metal ball is made up of metal (having density $8.8 \mathrm{~g} / \mathrm{cc}$ and mass 264 g) and single cavity (having volume V_{c} avity and no mass).
Volume of metal in the metal ball $=\frac{\text { Mass }}{\text { Density }}=\frac{264}{8.8}=30 \mathrm{cc}$
Using Archimedes Principle,
$F_{\text {boyant }}=$ weight of ball in air - weight of ball in water $=(264-221) \times g$
But $F_{\text {boyant }}=V_{\text {water displaced }} \times d_{\text {water }} \times g$
$\therefore 43 \times g=V_{\text {water displaced }} \times 1 \times g$
$V_{\text {water displaced }}=$ Volume of metal ball
\therefore Volume of metal ball $=43 \mathrm{cc}$
\therefore volume of cavity $=$ (volume of metal ball)-(volume of metal)
$=43-30=13 \mathrm{cc}$
Ans: 13
8. Consider the figure

For image of the ball to be seen moving vertically downwards, at every instant the image needs to be formed on verticle line passing through common point of mirror and the incline.
By laws of reflection, angle of image with mirror $=$ angle of ball or incline with mirror
\therefore angle of image with mirror $=\theta$.
Since image is on vertcle line, $44^{\circ}+\theta+\theta=90^{\circ}$
$\therefore \theta=23^{\circ}$
Ans: 23
9. As shown in the figure, consider 2 positions of the lens between fixed object and screen. The full-line lens showing position 1 and the dotted lens showing position 2.

For position 1:
Let $x=$ object distance (u) and $\mathrm{y}=$ image distance (v)
We know magnification $m=\frac{v}{u}=2$ (given)
$\therefore \frac{y}{x}=2$ i.e. $y=2 x$
For position 2:
Distance between object and screen is fixed $=(x+y)=3 x$
magnification $m=\frac{v}{u}=\frac{1}{2}$ (given)
i.e. $2 u=v$
but $u+v=3 x$
$\therefore v=x$
and hence $u=y$
\therefore object distance $(u)=y$ and image distance $(v)=x$
Now consider shift of lens from position 1 to position 2
distance shifted $=36$ (given) $=y-x$
but $y=2 x \quad \therefore x=36$ and $y=72$
Consider position 1 and using Cartesian sign convention
$u=-36, v=+72$
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
$\therefore \frac{1}{f}=\frac{1}{72}-\frac{1}{-36}=\frac{1}{72}+\frac{1}{36}$
$\therefore \frac{1}{f}=\frac{1}{24}$
$\therefore f=24$
Ans: 24
10. Consider the circuit

Current through the battery in the circuit is given as 2 A . Current through $R_{4}=I_{R_{4}}=2 \mathrm{~A}$
\therefore voltage across $R_{4}=V_{R_{4}}=I_{R_{4}} \times R_{4}=2 \times 25=50 \mathrm{~V}$
Voltage across resister R_{1} is given as 40 V
\therefore The voltage across the $\left(R_{2}+R_{3}\right)$ combination is: $120-(50 C+40 \mathrm{~V})=30 \mathrm{~V}$.
\therefore voltage across $R_{3}=V_{R_{3}}=30 \mathrm{~V}$, also voltage across $R_{2}=V_{R_{2}}$ is same i.e. 30 V
$\therefore I_{R_{3}}=\frac{V_{R_{3}}}{R_{3}}=\frac{30}{20}=1.5 \mathrm{~A}$.
$\therefore I_{R_{2}}=$ Current through the battery $-I_{R_{3}}=2-1.5=0.5 \mathrm{~A}$.
$\therefore R_{2}=\frac{V_{R_{2}}}{I_{R_{2}}}=\frac{30}{0.5}=60 \Omega$
Ans: 60
11. Consider the circuit

The bulbs are identical. Let their resistance be R.
When key is open, A is in series with B
$\therefore R_{\text {open }}=R+R=2 R \Omega$
When key is closed, A is in series with parallel combination of B and C
$\therefore R_{\text {closed }}=R+\left(\frac{R \times R}{R+R}\right)=R+\frac{R}{2}=\frac{3 R}{2} \Omega$
During operation of key, V rmains unchanged and also current through battery is same as current through A
When key is open, $I_{\text {open }}=\frac{V}{R_{\text {open }}}=\frac{V}{2 R} \mathrm{~A}$
When key is closed, $I_{\text {closed }}=\frac{V}{R_{\text {closed }}}=\frac{V}{3 R / 2}=\frac{2 V}{3 R} \mathrm{~A}$
$\therefore I_{\text {closed }}=\frac{4}{3} \times \frac{V}{2 R}=\frac{4}{3} \times I_{\text {open }}$
Consider power emiited by A:
when key is open, $P_{\text {open }}=I_{\text {open }}^{2} \times R=27$ watt (given)
when key is closed, $P_{\text {closed }}=I_{\text {closed }}^{2} \times R$
$\therefore P_{\text {closed }}=\left(\frac{4}{3} I_{\text {open }}\right)^{2} \times R=\frac{16}{9} \times I_{\text {open }}^{2} \times R$
$\therefore P_{\text {closed }}=\frac{16}{9} \times P_{\text {open }}=\frac{16}{9} \times 27=48 \mathrm{watt}$.
Ans: 48
12. Consider the graph of velocity v / s time for the motion

At $t=0$, its velocity is $20 \mathrm{~m} / \mathrm{s}$, at $t=5$, it is zero
Using the slope of the line, we get At $t=8$, its velocity as $-12 \mathrm{~m} / \mathrm{s}$
Displacement $=$ Area under the curve
From the graph,
Displacement for motion from $t=0$ till $t=5$ is $\frac{1}{2} \times 20 \times 5=50 \mathrm{~m}$
Displacement for motion from $t=5$ till $t=8$ is $\frac{1}{2} \times-12 \times 3=-18 \mathrm{~m}$
Distance covered $=$ numerical sum of two displacements $=50+18=68 \mathrm{~m}$
Ans: 68
13. Acceleration due to gravity on earth $=g=10 \mathrm{~m} / \mathrm{s}^{2}$

But $g_{\text {earth }}=\frac{G \times M_{\text {earth }}}{R_{\text {earth }}^{2}}$, similarly $g_{\text {planet }}=\frac{G \times M_{\text {planet }}}{R_{\text {planet }}^{2}}$
$\therefore \frac{g_{\text {earth }}}{g_{\text {planet }}}=\frac{M_{\text {earth }}}{M_{\text {planet }}} \times \frac{R_{\text {planet }}^{2}}{R_{\text {earth }}^{2}}$
Now mass $=$ Volume \times density $=\frac{4 \pi R^{3}}{3} \times d$
Substituting and cancelling $4 \pi / 3$, we get
$\therefore \frac{g_{\text {earth }}}{g_{\text {planet }}}=\frac{d_{\text {earth }} \times R_{\text {earth }}^{3}}{d_{\text {planet }} \times R_{\text {planet }}^{3}} \times \frac{R_{\text {planet }}^{2}}{R_{\text {earth }}^{2}}$
$\therefore \frac{g_{\text {earth }}}{g_{\text {planet }}}=\frac{d_{\text {earth }} \times R_{\text {earth }}}{d_{\text {planet }} \times R_{\text {planet }}}$
$\therefore \frac{10}{g_{\text {planet }}}=\left(\frac{d_{\text {earth }}}{d_{\text {planet }}}\right) \times\left(\frac{R_{\text {earth }}}{R_{\text {planet }}}\right)=\left(\frac{1}{1.1}\right) \times\left(\frac{1}{3}\right)=\frac{1}{3.3}$
$\therefore g_{\text {planet }}=10 \times 3.3=33 \mathrm{~m} / \mathrm{s}^{2}$ on the surface.
Ans: 33

Physics Solution-2013

1. Let the initial velocity of the particle at $t=0$ be $u \mathrm{~m} / \mathrm{s}$

Let the acceleration of the particle $=a \mathrm{~m} / \mathrm{s}^{2}$
In the first 4 seconds interval; the distance traveled $\left(d_{1}\right)=240 \mathrm{~m}$ and In the next 4 seconds interval; the distance traveled $\left(d_{2}\right)=640 \mathrm{~m}$
\therefore In the first 8 seconds interval; the distance traveled $=240+640=880 \mathrm{~m}$
Using $s=u t+\frac{1}{2} a t^{2}$
$s_{4}=240=4 u+\frac{1}{2}(a)(4)^{2}=4 u+8 a$
$\therefore 60=u+2 a \cdots(1)$
Also $s_{8}=880=8 u+\frac{1}{2}(a)(8)^{2}=8 u+32 a$
$\therefore 110=u+4 a \cdots(2)$
Subtracting (1) from (2), we get
$50=2 a$
$\therefore a=$ acceleration of the particle $=25 \mathrm{~m} / \mathrm{s}^{2}$
Ans: 25
2. Consider the graph of velocity v / s time for the motion

At $t=0$, its velocity is $7 \mathrm{~m} / \mathrm{s}$, at $t=10$, it is zero
Using the slope of the line, we get At $t=15$, its velocity as $-3.5 \mathrm{~m} / \mathrm{s}$
Displacement = Area under the curve
From the graph,
Displacement for motion from $t=0$ till $t=10$ is
$s_{1}=\frac{1}{2} \times 7 \times 10=35 \mathrm{~m}$
Displacement for motion from $t=10$ till $t=15$ is
$s_{2}=\frac{1}{2} \times-3.5 \times 5=-8.75 \mathrm{~m}$
Net displacement $=s_{1}+s_{2}=35+(-8.75)=26.25 \mathrm{~m}$
Ans: 26
3. Let motorcyclist 1 start from A and 2 start from B with same acceleration, (a)
$u_{1}=72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s}$ and $u_{2}=-36 \mathrm{~km} / \mathrm{h}=-10 \mathrm{~m} / \mathrm{s}$
Let the motor cyclists cross at time t
$s_{1}=u_{1} t+\frac{1}{2} a t^{2}=20 t+\frac{1}{2} \times 2 t^{2}=20 t+t^{2}$
$s_{2}=u_{2} t+\frac{1}{2}(-a) t^{2}=-10 t-\frac{1}{2} \times 2 t^{2}=-10 t-t^{2}$
When they cross, $s_{1}-s_{2}=500$
$\therefore 20 t+t^{2}+10 t+t^{2}=500$
$\therefore 2 t^{2}+30 t-500=0$
$\therefore t^{2}+15 t-250=0$
$\therefore(t+25)(t-10)=0$
$\therefore t=-25$ or 10 sec .
Discarding negative value, we get $t=10$ i.e. they cross in 10 sec
Ans: 10
4. Draw FBD of the ball during upward motion:

2 forces are acting on the ball - the weight of the ball (W) acting downwards. $W=m g$
and Tension (T) in the rope pulling the ball which is acting upwards
At maximum acceleration condition, $T_{\text {max }}=5 \mathrm{mg}$ (given)
$\therefore F_{n e t}=T_{\max }-W=4 \mathrm{mg}$ and is acting upwards
\therefore maximum acceleration of the ball $=\frac{F_{n e t}}{m}=\frac{4 m g}{m}=4 g=40 \mathrm{~m} / \mathrm{s}^{2}$
Ans: 40
5. Draw FBD of the block. Since the motion is only horizontal, we can ignore the vertical forces (weight and Normal reaction balance each other).
Applied Force of 40 N is opposed by frictional force of 13 N
$\therefore F_{\text {net }}=40-13=27 \mathrm{~N}$
$\therefore a$ of the block $=\frac{F_{n e t}}{m}=\frac{27}{10}=2.7 \mathrm{~m} / \mathrm{s}^{2}$
Initial momentum $\left(P_{0}\right)=m \times u=10 \times 0=0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Final momentum $\left(P_{3}\right)=m \times v=10 \times 8.1=810 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
\therefore Change in momentum $=P_{3}-P_{0}=81 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Ans: 81
6. The bullet's velocity decreases from initial $(u=1000 \mathrm{~m} / \mathrm{s})$ to final $(v=600 \mathrm{~m} / \mathrm{s})$ due to air friction
The change in KE will be due to the work done by friction.
$\triangle E=\frac{1}{2} m u^{2}-\frac{1}{2} m v^{2}=\frac{1}{2} \times m(1000)^{2}-\frac{1}{2} \times m(600)^{2}$
$=\frac{1}{2} \times 10^{-2} \times\left(100 \times 10^{4}-36 \times 10^{4}\right)==\frac{1}{2} \times 10^{-2} \times\left(64 \times 10^{4}\right)$
$\therefore \triangle E=$ work done by friction $=32 \times 10^{2} \mathrm{~J}$
Since W is given as $=n \times 10^{2} \mathrm{~J}$, we get $n=32$
Ans: 32
7. Since $V=I R$, we get $I_{\max }$ when we have $R_{\text {min }}$

And we get $I_{\text {min }}$ when we have $R_{\text {max }}$
$V=I_{\text {max }} \times R_{\text {min }}=I_{\text {min }} \times R_{\text {max }}$
$\frac{R_{\text {max }}}{R_{\text {min }}}=\frac{I_{\text {max }}}{I_{\text {min }}}$
We get $R_{\text {max }}$ when all 3 resistances are in series
$\therefore R_{\text {max }}=R_{1}+R_{2}+R_{3}=20+10+5=35 \omega$
We get $R_{\text {min }}$ when all 3 resistances are in parallel
$\therefore \frac{1}{R_{\text {min }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}=\frac{1}{20}+\frac{1}{10}+\frac{1}{5}=\frac{1+2+4}{20}$
$\therefore R_{\text {min }}=\frac{20}{7} \Omega$
Now, $\frac{I_{\text {max }}}{I_{\text {min }}}=\frac{R_{\text {max }}}{R_{\text {min }}}=\frac{35}{20 / 7}=\frac{35 \times 7}{20}==\frac{49}{4}=12.25$
Ans: 12
8. Please correct the typo error in the paper and read total volume as $2.5 \times 10^{-3} \mathrm{~m}^{3}$

Area of wire $=\frac{\text { volume }}{\text { length }}=\frac{2.5 \times 10^{-3}}{1}=2.5 \times 10^{-3} \mathrm{~m}^{3}$
Resistance $=\frac{\text { Resistivity } \times \text { length }}{\text { Area }}=\frac{0.1 \times 1}{2.5 \times 10^{-3}}$
$\therefore R=\frac{1000}{25}=40 \Omega$
Ans: 40
9. Please refer to schematic figure shown

The incident beam parallel to optical axis will get refracted by lens $1(f=12)$ such that it gets converged at the point of focus (ptF) at 12 cm from the lens.
Each of the converged ray passing through F will then reach lens $2(\mathrm{f}=30)$. Since point F is also point of focus for lens 2 , after passing through lens 2 , each ray will emerge parallel to optical axis.
Consider $\triangle A F B$ and $\triangle C F D$
These are similar triangles (as side $A B \|$ side $C D$)
\therefore ratio of lengths of sides as well as altitudes is equal.
$\therefore \frac{A B}{C D}=\frac{F P_{1}}{F P_{2}}$, where P_{1} and P_{2} are poles of lens 1 and lens 2 respectively.
$\therefore \frac{20}{C D}=\frac{12}{30}$
$\therefore C D=50 \mathrm{~cm}$
Ans: 50
10. As shown in the figure, point S will create two images, image S_{1} in mirror 1 and image S_{2} in mirror 2.

For mirror 1:
Distance $O S=10$ (given)
\therefore object distance for mirror $1=O S \sin 60^{\circ}=10 \times \frac{\sqrt{3}}{2}=5 \sqrt{3}$
\therefore image distance for mirror 1 will also be $5 \sqrt{3}$.
\therefore Distance $S S_{1}=10 \sqrt{3}$.
For mirror 2:
similarly distance $S S_{2}=10 \sqrt{3}$.
Consider $\triangle S S_{1} S_{2}$:
Now $\angle O S S_{1}=30^{\circ}$ (as $S S_{1}$ is perpendicular to mirror 1)
And $\angle O S S_{2}=30^{\circ}$ (as $S S_{2}$ is perpendicular to mirror 2)
In $\triangle S S_{1} S_{2}$, side $S S_{1}=$ side $S S_{2}$ and included $\angle S_{1} S S_{2}=60^{\circ}$
$\therefore \triangle S S_{1} S_{2}$ is an equilateral \triangle
$\therefore S_{1} S_{2}=10 \sqrt{3}=10 \times 1.73=17.3$
Ans: 17
11. Weight of body in air $=m g=100 \mathrm{~N} \therefore m=10 \mathrm{~kg}$

Using Archimedes Principle,
$F_{\text {boyant }}=$ weight of body in air - weight of body in water
$=100-85=15 \mathrm{~N}$
But $F_{\text {boyant }}=V_{\text {water displaced }} \times d_{\text {water }} \times g$
$V_{\text {water displaced }}=V_{\text {body }}$
$\therefore 15=V_{\text {body }} \times 10^{4}$
$\therefore 15=\frac{m_{\text {body }}}{d_{\text {body }}} \times 10^{4}=\frac{10}{d_{\text {bod } y}} \times 10^{4}$
$\therefore d_{\text {body }}=\frac{10^{5}}{15}=6.6667 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}=6.6667 \mathrm{~g} / \mathrm{cc}$
$\therefore 10 d=66.67$
Ans: 67
12. Acceleration due to gravity on earth $=g=10 \mathrm{~m} / \mathrm{s}^{2}$

But $g_{\text {earth }}=\frac{G \times M_{\text {earth }}}{R_{\text {earth }}^{2}}$,
The density and radius are changed, then
$g_{\text {new }}=\frac{G \times M_{\text {new }}}{R_{\text {new }}^{2}}$
$\therefore \frac{g_{\text {earth }}}{g_{\text {new }}}=\frac{M_{\text {earth }}}{M_{\text {new }}} \times \frac{R_{\text {new }}^{2}}{R_{\text {earth }}^{2}}$
Now mass $=$ Volume \times density $=\frac{4 \pi R^{3}}{3} \times d$
Substituting and cancelling $4 \pi / 3$, we get
$\therefore \frac{g_{\text {earth }}}{g_{\text {new }}}=\frac{d_{\text {earth }} \times R_{\text {earth }}^{3}}{d_{\text {new }} \times R_{\text {new }}^{3}} \times \frac{R_{\text {new }}^{2}}{R_{\text {earth }}^{2}}$
$\therefore \frac{g_{\text {earth }}}{g_{\text {new }}}=\frac{d_{\text {earth }} \times R_{\text {earth }}}{d_{\text {new }} \times R_{\text {new }}}$
$\therefore \frac{10}{g_{\text {new }}}=\left(\frac{d_{\text {earth }}}{d_{\text {new }}}\right) \times\left(\frac{R_{\text {earth }}}{R_{\text {new }}}\right)=\left(\frac{1}{0.5}\right) \times\left(\frac{1}{3}\right)=\frac{1}{1.5}$
$\therefore g_{\text {new }}=10 \times 1.5=15 \mathrm{~m} / \mathrm{s}^{2}$
Ans: 15

Physics Solution-2012

1. The two trains each traveling with speed of $40 \mathrm{~km} / \mathrm{hr}$, are coming towards each other from a distance of 80 km apart.
\therefore Time after which trains will collide $=1 \mathrm{hr}$
\therefore The bird is traveling for 1 hr only before the trains collide. It is moving with constant speed $60 \mathrm{~km} / \mathrm{h}$
so distance traveled by bird $=$ speed \times time $=60 \times 1=60 \mathrm{~km}$
Ans: 60
2. For first ball's downward motion:
$u=0, s=-8 \mathrm{~m}$
Velocity of ball just before striking: $v^{2}=u^{2}+2 a s$
$\therefore v^{2}=0+2 \times 10 \times 8=160 \therefore v=\sqrt{160}$
This is same speed with which it starts its upward motion
At same instance second ball is released from 8 m above the ground
Let the two balls collide at a dist d from top i.e. They collide at a dist of $(8-d)$ from bottom.
For ball 1 upward motion: $s_{1}=u t+\frac{1}{2} a t^{2}$
$\therefore(8-d)=\sqrt{160} \times t-5 t^{2}$
For ball 2 downward motion: $s_{2}=u t+\frac{1}{2} a t^{2}$
$\therefore d=\frac{1}{2} \times 10 t^{2}=5 t^{2}$
$\therefore t=\sqrt{d / 5}$
Time t is same for both balls,
$\therefore 8-d=\sqrt{160} \times \sqrt{\frac{d}{5}}-d$
$\therefore 8=\sqrt{32 \times d}$
$\therefore 64=32 d \therefore d=2 \mathrm{~m}$
\therefore The ball collide at a dist of $(8-2=6 \mathrm{~m})$ above the ground.
Ans: 6
3. Draw 3 separate FBDs, 1 FBD for entire system of 4 blocks, 1FBD for first block and 1 FBD for last block
Since block undergo horizontal motion only, we can ignore vertical forces

For system of 4 blocks:
Total mass $=5+5+5+5=20 \mathrm{~kg}$ and only external force F is acting
$a=\frac{F}{m}=\frac{100}{20}=5 \mathrm{~m} / \mathrm{s}^{2}$
This acceleration is same for all 4 blocks.
Now for first block:
its acceleration is $5 \mathrm{~m} / \mathrm{s}^{2}$
$F_{n e t}$ on the block $=\mathrm{ma}=5 \times 5=25 \mathrm{~N}$
2 horizontal forces are acting on block A, External force, F and tension T_{1} opposing it
$\therefore T_{1}=F-F_{n e t}=100-25=75 \mathrm{~N}$
Now for last block:
its acceleration is $5 \mathrm{~m} / \mathrm{s}^{2}$
$F_{n e t}$ on the block $=\mathrm{ma}=5 \times 5=25 \mathrm{~N}$
Only 1 horizontal force, Tension T_{3} is acting on it.
$\therefore T_{3}=F_{n e t}=25 \mathrm{~N}$
$\therefore T_{1}: T_{3}=\frac{T_{1}}{T_{3}}=\frac{75}{25}=3$
Ans: 3
4. Consider the figure

Block has $\mathrm{PE}=m g h$ at the top of slope which is converted to KE when it reaches the bottom.
$\therefore=\frac{1}{2} m v^{2}=m g h$.
$\therefore v^{2}=2 g h=2 \times 10 \times 1=20$
\therefore Velocity at the bottom of incline is $v=2 \sqrt{5} \mathrm{~m} / \mathrm{s}$
For horizontal motion, we know that the block stops after moving 5 meters.
We have $u=2 \sqrt{5}, s=5, v=0$
Using $v^{2}=u^{2}+2 a s$, we get $0=20+2 . a .5$
$\therefore a=-2 \mathrm{~m} / \mathrm{s}^{2}$
$F_{\text {net }}$ on the block $=\mathrm{ma}=10 \times-2=-20 \mathrm{~N}$
Draw FBD of the block on horizontal surface.
Since block undergo horizontal motion only, we can ignore vertical forces
Only 1 horizontal force, frictional force, f is acting on it.
$\therefore f=F_{n e t}=20 \mathrm{~N}$ and acting opposite to the motion
but $f=\mu m g \quad \therefore \mu=\frac{20}{10 \times 10}=0.2$
$\therefore 100 \mu=20$
Ans: 20
5. Consider the figure

Particle P is moving with $u=10 \mathrm{~cm} / \mathrm{s}$ and its motion makes an angle of 60° with the x axis.
The mirror is perpendicular to x axis. Any any instant image of P will be formed behind mirror at same perpendicular distance from the mirror as that of P in front of the mirror.
Hence we need to consider only the horizontal component of motion of P i.e. $u_{\text {horizontal }}=10 \cos \left(60^{\circ}\right)=5 \mathrm{~m} / \mathrm{s}$.
The mirror is moving parallel to x axis with $v=20 \mathrm{~m} / \mathrm{s}$ towards P.
\therefore Relative horizontal speed of P w.r.t the plane mirror $=20+5=25 \mathrm{~m} / \mathrm{s}$
\therefore Relative speed of the image and $P=25+25=50 \mathrm{~m} / \mathrm{s}$
Ans: 50
6. Consider the circuit

When battery connected across A (say + ve terminal) and G (-ve terminal), current through the battery $I=\frac{V}{R_{A G}}=\frac{100}{5 / 3}=60 \mathrm{~A}$
Consider node A :
Current $I(60 A)$ which approaches node A has 3 paths to branch out, namely $A B, A D$ and $A E$
As per symmetry and as all branches have same resistance,
I gets equally split in these 3 branches
$\therefore I_{A B}=I_{A D}=I_{A E}=20 \mathrm{~A}$
Consider node D :
Current $I_{A D}=20 \mathrm{~A}$, which approaches node D has 2 paths to branch out, namely $D C$ and $D H$
As per symmetry and as all branches have same resistance,

I gets equally split in these 2 branches
$\therefore I_{C D}=I_{D H}=10 \mathrm{~A}$
Ans: 10
7. Consider the figure

Both the particles start from same point C.
Particle 1 is moving faster than particle 2 . When they meet again, if particle 2 would have moved through angle (θ) then particle 1 would have moved through angle $(360+\theta)$
Relative angular velocity of particle $1=\omega_{1}-\omega_{2}=5 \omega_{2}-\omega_{2}=4 \omega_{2}$
The two particles meet again after 3 s
$\therefore 4 \omega_{2} \times t=360$ gives us $4 \omega_{2} \times 3=360$
$\therefore \omega_{2}=360 / 12=30 \mathrm{deg} / \mathrm{sec}$
Now, 1.5 sec after start of motion
Angle covered $=\omega_{2} \times 1.5=30 \times 1.5=45 \mathrm{deg}$
Ans: 45
8. Consider the circuit

Resistor R of 2Ω next to the battery is in series with (parallel combination of remaining 3 resistors of $1 \Omega, 2 \Omega$ and 1Ω)
$\frac{1}{R_{\text {parallel }}}=\frac{1}{1}+\frac{1}{2}+\frac{1}{1}=\frac{2+1+2}{2}=\frac{5}{2}$
$\therefore R_{\text {parallel }}=\frac{2}{5} \Omega$
Total resistance of circuit $R_{0}=R+R_{\text {parallel }}=2+\frac{2}{5}=\frac{12}{5} \Omega$
Now current through the battery $I_{0}=\frac{V_{0}}{R_{0}}=\frac{2}{12 / 5}=\frac{10}{12} \mathrm{~A}$
Current $=$ Charge flow per unit time $\therefore I_{0}=\frac{Q_{0}}{t}$
$\therefore Q_{0}=I_{0} \times t=\frac{10 \times t}{12} \mathrm{C}$
It is given that $W_{B}=Q_{0} V_{0}$
$\therefore 60=\frac{10 \times t}{12} \times 2$
$\therefore \frac{60 \times 12}{10 \times 2}=t=36 \mathrm{~s}$
Ans: 36
9. Consider the figure

Net force $F_{n e t}$ acting one the object is resultant of the two forces shown
Since they have 90° angle between them, the parallelogram completed with them as sides will be a rectangle
The resultant would be diagonal of the rectangle, which can be found by using Pythagoras theorem.
$\therefore F_{\text {net }}=\sqrt{40^{2}+9^{2}}=41 \mathrm{~N}$
Acceleration of the block $=\frac{F_{\text {net }}}{m}=\frac{41}{0.5}=82 \mathrm{~m} / \mathrm{s}^{2}$
Ans: 82
10. Using cartesian sign convention:

For convex lens, $f=+5 \mathrm{~cm}, u=-10 \mathrm{~cm}$
Using lens formula, $\frac{1}{v}=\frac{1}{f}+\frac{1}{u}=\frac{1}{5}+\frac{1}{-10}=\frac{1}{5}-\frac{1}{10}=\frac{1}{10}$
$\therefore v=+10 \mathrm{~cm}$
Now, for concave lens,
$f=-10 \mathrm{~cm}, u=-(25-10)=-15 \mathrm{~cm}$
Using lens formula, $\frac{1}{v}=\frac{1}{f}+\frac{1}{u}=\frac{1}{-10}+\frac{1}{-15}=-\left(\frac{1}{10}+\frac{1}{15}\right)=-\frac{1}{6}$
$\therefore v=-6 \mathrm{~cm}$
Ans: 6
11. Consider the figure

Let the ant start at corner C and travels to opposite corner E along shortest path along the faces of the cube
One such shortest path would be

1. C - midpoint of opposite side $A D-E$

Similarly other paths would be
2. C - midpoint of opposite side $A B-E$
3. C - midpoint of opposite side $F G-E$
4. C - midpoint of opposite side $B F-E$
5. C - midpoint of opposite side $D H-E$
6. C - midpoint of opposite side $G H-E$

Ans: 6
12. Consider the figure

Speed of light is constant in any medium.
Light incident perpendicular to the face of slab 1 will travel, first 5 cm in slab 1 for time t_{1},
then 10 cm in slab 2 for time t_{2}, get reflected and
then 10 cm in slab 2 for time t_{2} and
finally 5 cm in slab 1 for time t_{1} and come out of slab 1 .
Refractive index $\eta=\frac{\text { speed of light in the vacuum }}{\text { speed of light in the slab }}=\frac{c}{v}$
For slab 1: $\eta_{1}=\frac{c}{v_{1}}=1.5$ and
$\therefore v_{1}=\frac{c}{1.5}=\frac{3 \times 10^{8}}{1.5}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
For slab 2: $\eta_{2}=\frac{c}{v_{2}}=2$ and
$\therefore v_{2}=\frac{c}{2}=\frac{3 \times 10^{8}}{2}=1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Now $t=\frac{\text { distance traveled by light }}{\text { speed of light in the slab }}$
$\therefore t_{1}=\frac{5 \times 10^{-2}}{2 \times 10^{8}}=2.5 \times 10^{-10} \mathrm{sec}$
$\therefore t_{2}=\frac{10 \times 10^{-2}}{1.5 \times 10^{8}}=(20 / 3) \times 10^{-10} \mathrm{sec}$
Total time T required for light to come out of face of slab 1
$T=t_{1}+t_{2}+t_{2}+t_{1}=2\left(t_{1}+t_{2}\right)$
$\therefore T=2\left(\frac{5}{2}+\frac{20}{3}\right) \times 10^{-10} \mathrm{sec}$
$\therefore T=2\left(\frac{15+40}{6}\right)=\left(\frac{55}{3}\right) \times 10^{-10}=18.33 \times 10^{-10} \mathrm{sec}$
Ans: 18
13. Consider the figure

Let, t be the time taken by A to overtake B and $x \mathrm{~m}$ be distance traveled by B at time t
\therefore distance traveled by $A=600+x$
For B: $u=10 \mathrm{~m} / \mathrm{s}, a=0$ and $s=x$
$s=u t+\frac{1}{2} a t^{2}$
$\therefore x=10 t$
For A: $u=0, a=10 \mathrm{~m} / \mathrm{s}^{2}$ and $s=600+x$
$s=u t+\frac{1}{2} a t^{2}$
$\therefore 600+x=5 t^{2}$
$\therefore 600+10 t=5 t^{2}$
We get $5 t^{2}-10 t-600=0$
$\therefore t^{2}-2 t-120=0$
$\therefore t^{2}-12 t+10 t-120=0$
$\therefore t(t-12)+10(t-12)=0$
$\therefore(t-12)(t+10)=0$
Discarding negative value for time, we get $t=12 \mathrm{sec}$
Ans: 12

