M. Prakash Institute Entrance Test for XI std.

Section I - Physics

Please take value of g as $10 \mathrm{~m} / \mathrm{s}^{2}$ wherever required

1. Two identical blocks A and B , each of mass $\mathrm{M}=4 \mathrm{~kg}$, are connected by a light in-extensible string as shown. Block A is kept on a smooth horizontal table. Force F is applied such that the blocks are at rest. A small block of mass $m=2 \mathrm{~kg}$ is now placed over block B as shown, with Force F still applied. Calculate velocity of block A (in m / s) at the instant when Block B has descended through 1 m . Please take value of g as $\mathbf{1 0} \mathbf{~ m} / \mathrm{s}^{2}$

2. An elevator without a ceiling is ascending with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. A boy on the elevator shoots a ball directly upward from a height of 1 m above the elevator floor when the elevator floor is 29 m above the ground. The ball attains maximum height of 75 m above the ground. Calculate the total distance covered by the ball before the boy catches the ball again at same height of 1 m above the elevator floor. Please take value of g as $\mathbf{1 0}$ $\mathrm{m} / \mathrm{s}^{2}$
3. In an optics experiment, with position of object fixed, a student varies the position of a convex lens of focal length 20 cm and for each position, the screen is adjusted to get a clear image of the object. A graph between the object distance 'u' (in cm) and the image distance ' v ' (in cm), from the lens, is plotted using the same scale for two axes. A straight line passing through the origin and making an angle of 45° with the x -axis meets the experimental curve at point P. Find the y-coordinate of pont P.
4. A wooden block of mass 10 gm is dropped from the top of a cliff 100 m high. Simultaneously, a bullet of mass 10 gm is fired from the foot of the cliff upward with a velocity 100 m / s. The bullet gets embedded in the block. How high will it rise above the cliff before it starts falling back. Express your answer in meters. Please take value of g as $\mathbf{1 0} \mathbf{~ m} / \mathbf{s}^{2}$
5. A spherical planet has density of $3600 \mathrm{~kg} / \mathrm{m}^{3}$. The gravitational acceleration at its surface is $64 \pi \mathrm{~m} / \mathrm{s}^{2}$. A very small satellite rotating in circular orbit is located at R m away from its surface, where R is the radius of the planet. Find the linear speed of the satellite. Use $\mathrm{G}=(20 / 3) \times 10^{-11} N-m^{2} / k^{2}$. Volume of spherical planet $=\frac{4 \pi R^{3}}{3}$. Express your answer as $\mathrm{X} \sqrt{\pi} \times 10^{Y}$ where X and Y are single digit integers. Calculate ($\mathrm{X}+\mathrm{Y}$) and mark that as your answer.
6. 80 gm of ice at $-10^{\circ} \mathrm{C}$ is mixed with 460 gm of liquid water at $20^{\circ} \mathrm{C}$ and 10 gm steam at $100^{\circ} \mathrm{C}$. The container is insulated so that no heat is lost. Find the equilibrium temperature of the contents (in ${ }^{\circ} \mathrm{C}$).
Given: Specific heat of ice $=0.5 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$; Specific heat of water $1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$
Latent of fusion(water-ice): $80 \mathrm{cal} / \mathrm{gm}$;
Latent heat of evaporation(water-steam): $540 \mathrm{cal} / \mathrm{gm}$
7. A particle is moving with uniform velocity and covers 80 m in a straight line in first 40 seconds. At $\mathrm{t}=40$ it begins to accelerates at $2 \mathrm{~m} / \mathrm{s}^{2}$ in the same direction. Find the distance covered by the particle during the time interval $\mathrm{t}=60 \mathrm{~s}$ and $\mathrm{t}=62 \mathrm{~s}$.
8. A cuboid shaped boat in a lake is floating and stationary. It is made of extremely thin sheets, so that their thickness and volume is negligible. The boat has internal volume of $4 \mathrm{~m}^{3}$. Mass of the boat is 1000 kg and it is empty. It is put in water of density $1 \mathrm{gm} / \mathrm{cc}$ and the boat floats. Now, a small hole is drilled in the bottom of the boat and water starts accumulating inside. Find the $\%$ of boat volume filled with water, when water starts to come inside from the top of the boat's sides.
9. In a car race on a straight road, car A wins the race by 5 second. Car A crosses finish line with speed $V_{1} \mathrm{~m} / \mathrm{s}$ and car B crosses finish line with speed $\mathrm{V}_{2} \mathrm{~m} / \mathrm{s}$. Both cars start from rest simultaneously from the starting point. Car B travels with uniform acceleration of $2.25 \mathrm{~m} / \mathrm{s}^{2}$ while car A travels with uniform acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. Calculate difference between V_{1} and V_{2}.
10. Eight resistor blocks are connected in a circuit as shown below, where $\mathrm{r}=7 \Omega$. Find resistance between A and B (in Ω)

Section II -Chemistry

Atomic numbers: $\mathrm{H}: 1, \mathrm{C}: 6, \mathrm{~N}: 7, \mathrm{O}: 8, \mathrm{~F}: 9$, $\mathrm{Na}: 11, \mathrm{Mg}: 12, \mathrm{~S}: 16, \mathrm{Cl}: 17, \mathrm{~K}: 19$, Ca:20, Mn:25, Fe:26, Cu:29, Zn:30, Ag:47 Sn:50,W:74.

Atomic masses: $\mathrm{H}: 1, \mathrm{C}: 12, \mathrm{~N}: 14, \mathrm{O}: 16, \mathrm{~F}: 19, \mathrm{Na}: 23, \mathrm{Mg}: 24, \mathrm{~S}: 32, \mathrm{Cl}: 35.5$, K:39, Ca: 40, Mn:55, Fe : 56, Cu: 63.5, Zn:65, Ag:108, Sn : 119, W:184.
11. Atomic number of an element ' A ' is 46 . Write the group number in which ' A ' is present in the Modern periodic table.
Atomic numbers: $\mathrm{H}: 1, \mathrm{C}: 6, \mathrm{~N}: 7, \mathrm{O}: 8, \mathrm{~F}: 9, \mathrm{Na}: 11, \mathrm{Mg}: 12, \mathrm{~S}: 16, \mathrm{Cl}: 17, \mathrm{~K}: 19$, Ca:20, Mn:25, Fe:26, Cu:29, Zn:30, Ag:47 Sn:50,W:74.
Atomic masses: $\mathrm{H}: 1, \mathrm{C}: 12, \mathrm{~N}: 14, \mathrm{O}: 16, \mathrm{~F}: 19, \mathrm{Na}: 23, \mathrm{Mg}: 24, \mathrm{~S}: 32, \mathrm{Cl}: 35.5$, K:39, Ca: 40, Mn:55, Fe : 56 , Cu: 63.5, Zn:65, Ag:108, Sn : 119, W:184.
12. What is the amount in grams of water produced when 1 mole of Copper metal is treated with dilute nitric acid solution?
Atomic numbers: $\mathrm{H}: 1, \mathrm{C}: 6, \mathrm{~N}: 7, \mathrm{O}: 8, \mathrm{~F}: 9, \mathrm{Na}: 11, \mathrm{Mg}: 12, \mathrm{~S}: 16, \mathrm{Cl}: 17, \mathrm{~K}: 19$, Ca:20, Mn:25, Fe:26, Cu:29, Zn:30, Ag:47 Sn:50,W:74.
Atomic masses: $\mathrm{H}: 1, \mathrm{C}: 12, \mathrm{~N}: 14, \mathrm{O}: 16, \mathrm{~F}: 19$, $\mathrm{Na}: 23, \mathrm{Mg}: 24, \mathrm{~S}: 32, \mathrm{Cl}: 35.5$, K:39, Ca: 40, Mn:55, Fe : 56 , Cu: 63.5, Zn:65, Ag:108, Sn : 119, W:184.
13. Following are the IUPAC names of some compounds. Write the molar mass of the compound with CORRECT name.
(i) 4- Chloropentane (ii) Propan -1-ol (iii) Butan-3-oic acid.
14. $34 \mathrm{gm} \mathrm{AgNO}_{3}$ is present in it's aqueous solution. It is completely reacted with NaCl . The product is filtered. The filtrate is heated to dryness. Write the mass of the dry filtrate in grams.
Atomic numbers: $\mathrm{H}: 1, \mathrm{C}: 6, \mathrm{~N}: 7, \mathrm{O}: 8, \mathrm{~F}: 9, \mathrm{Na}: 11, \mathrm{Mg}: 12, \mathrm{~S}: 16, \mathrm{Cl}: 17, \mathrm{~K}: 19$, Ca:20, Mn:25, Fe:26, Cu:29, Zn:30, Ag:47 Sn:50,W:74.
Atomic masses: $\mathrm{H}: 1, \mathrm{C}: 12, \mathrm{~N}: 14, \mathrm{O}: 16, \mathrm{~F}: 19, \mathrm{Na}: 23, \mathrm{Mg}: 24, \mathrm{~S}: 32, \mathrm{Cl}: 35.5$, K:39, Ca: 40, Mn:55, Fe : 56 , Cu: 63.5, Zn:65, Ag:108, $\mathrm{Sn}: 119$, W:184.
15. Write the molar mass of the lowest hydrocarbon with one double bond and one triple bond in it.
Atomic numbers: $\mathrm{H}: 1, \mathrm{C}: 6, \mathrm{~N}: 7, \mathrm{O}: 8, \mathrm{~F}: 9$, $\mathrm{Na}: 11, \mathrm{Mg}: 12, \mathrm{~S}: 16, \mathrm{Cl}: 17, \mathrm{~K}: 19$, Ca:20, Mn:25, Fe:26, Cu:29, Zn:30, Ag:47 Sn:50,W:74.
Atomic masses: $\mathrm{H}: 1, \mathrm{C}: 12, \mathrm{~N}: 14, \mathrm{O}: 16, \mathrm{~F}: 19, \mathrm{Na}: 23, \mathrm{Mg}: 24, \mathrm{~S}: 32, \mathrm{Cl}: 35.5$, K:39, Ca: 40, Mn:55, Fe : 56 , Cu: 63.5, Zn:65, Ag:108, Sn : 119, W:184.
16. When Copper is treated with concentrated and dilute Nitric acid separately, we get a gaseous product in each reaction. Write the difference in the molar masses of gaseous products of both the reactions.
Atomic numbers: $\mathrm{H}: 1, \mathrm{C}: 6, \mathrm{~N}: 7, \mathrm{O}: 8, \mathrm{~F}: 9, \mathrm{Na}: 11, \mathrm{Mg}: 12, \mathrm{~S}: 16, \mathrm{Cl}: 17, \mathrm{~K}: 19$, Ca:20, Mn:25, Fe:26, Cu:29, Zn:30, Ag:47 Sn:50,W:74.
Atomic masses: $\mathrm{H}: 1, \mathrm{C}: 12, \mathrm{~N}: 14, \mathrm{O}: 16, \mathrm{~F}: 19, \mathrm{Na}: 23, \mathrm{Mg}: 24, \mathrm{~S}: 32, \mathrm{Cl}: 35.5$, K:39, Ca: 40, Mn:55, Fe : 56, Cu: 63.5, Zn:65, Ag:108, Sn : 119, W:184.
17. Take 171 grams of Sugar in an evaporating dish and heat it with the help of a bunsen burner. After some time, you will see the formation of a burnt out black substance. What will be the mass in grams of the black substance?
Atomic numbers: $\mathrm{H}: 1, \mathrm{C}: 6, \mathrm{~N}: 7, \mathrm{O}: 8, \mathrm{~F}: 9, \mathrm{Na}: 11, \mathrm{Mg}: 12, \mathrm{~S}: 16, \mathrm{Cl}: 17, \mathrm{~K}: 19$, Ca:20, Mn:25, Fe:26, Cu:29, Zn:30, Ag:47 Sn:50,W:74.
Atomic masses: $\mathrm{H}: 1, \mathrm{C}: 12, \mathrm{~N}: 14, \mathrm{O}: 16, \mathrm{~F}: 19, \mathrm{Na}: 23, \mathrm{Mg}: 24, \mathrm{~S}: 32, \mathrm{Cl}: 35.5$, K:39, Ca: 40, Mn:55, Fe : 56, Cu: 63.5, Zn:65, Ag:108, Sn : 119, W:184.
18. On heating, Potassium chlorate $\left(\mathrm{KClO}_{3}\right)$ decomposes slowly.
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
The rate of the above reaction neither increases by reducing the particle size nor by increasing the reaction temperature. However KClO_{3} decomposes rapidly in presence of a metal oxide to liberate O_{2} gas. No chemical change takes place in the metal oxide in the above reaction. What is the molar mass of the metal oxide used?
Atomic numbers: $\mathrm{H}: 1, \mathrm{C}: 6, \mathrm{~N}: 7, \mathrm{O}: 8, \mathrm{~F}: 9, \mathrm{Na}: 11, \mathrm{Mg}: 12, \mathrm{~S}: 16, \mathrm{Cl}: 17, \mathrm{~K}: 19$, Ca:20, Mn:25, Fe:26, Cu:29, Zn:30, Ag:47 Sn:50,W:74.
Atomic masses: $\mathrm{H}: 1, \mathrm{C}: 12, \mathrm{~N}: 14, \mathrm{O}: 16, \mathrm{~F}: 19, \mathrm{Na}: 23, \mathrm{Mg}: 24, \mathrm{~S}: 32, \mathrm{Cl}: 35.5$, K:39, Ca: 40, Mn:55, Fe : 56, Cu: 63.5, Zn:65, Ag:108, Sn : 119, W:184.
19. Casseterite is a Tin ore. It contains mainly the non magnetic ingredient, a metal oxide , $M O_{2}$ and the magnetic ingredient, Ferrous tungstate, $F e W O_{4}$. Identify $M O_{2}$ and write the atomic number of ' M '.
Atomic numbers: $\mathrm{H}: 1, \mathrm{C}: 6, \mathrm{~N}: 7, \mathrm{O}: 8, \mathrm{~F}: 9, \mathrm{Na}: 11, \mathrm{Mg}: 12, \mathrm{~S}: 16, \mathrm{Cl}: 17, \mathrm{~K}: 19$, Ca:20, Mn:25, Fe:26, Cu:29, Zn:30, Ag:47 Sn:50,W:74.
Atomic masses: $\mathrm{H}: 1, \mathrm{C}: 12, \mathrm{~N}: 14, \mathrm{O}: 16, \mathrm{~F}: 19, \mathrm{Na}: 23, \mathrm{Mg}: 24, \mathrm{~S}: 32, \mathrm{Cl}: 35.5$, K:39, Ca: 40, Mn:55, Fe : 56, Cu: 63.5, Zn:65, Ag:108, Sn : 119, W:184.
20. The reactions in which simultaneous oxidation and reduction of reacting species takes place are called as redox reactions. Transfer of electrons in a reaction from one species to another is also a form of oxidation and reduction.
Study the following reactions. How many of them are redox reactions?
(i) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$
(ii) $4 \mathrm{Na} a_{(s)}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}$
(iii) $\mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}$
(iv) $\mathrm{Cl}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{HOCl}_{(a q)}+\mathrm{HCl}_{(a q)}$
(v) $Z n_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{ZnCl}_{2(a q)}+H_{2(g)} \uparrow$
(vi) $2 K_{(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{KOH}_{(a q)}+\mathrm{H}_{2(g)}$
(vii) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2} \uparrow$
(viii) $\mathrm{CuSO}_{4(a q)}+\mathrm{Mg}(s) \rightarrow M g S O_{4(a q)}+C u_{(s)}$
(ix) $\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(x) $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
(xi) $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} \uparrow$

Section III - Maths

21. $\square A B C D$ is convex quadrilateral. E is a point on $\overline{A D}$. F is point inside $\square A B C D$, such that $C F$ and $E F$ bisects $\angle A C B$ and $\angle B E D$ respectively. $m \angle C A D=28^{\circ}$ and $m \angle C B E=64^{\circ}$. Let measure of angle $C F E=K$. Report $\frac{K}{2}$
22. $\square A B C D$ is a square and $\square B D E F$ is a rhombus such that C, F, E are collinear. Find $m \angle C B F$.
23. Let $A X Y Z B$ be a convex pentagon inscribed in a semicircle centered at O with diameter $A B$. Let P, Q, R and S denote the feet of the perpendiculars from point Y to lines $A X, B X, A Z, B Z$ respectively. Let $P Q$ and $R S$ intersect at C. If $m \angle X O Z=72^{\circ}$. Find $m \angle P C S$.
24. $\square A B C D$ is a square. E is midpoint of $\overline{A B}$ and F is midpoint of $\overline{B C} \cdot \overline{C E}$ and $\overline{D F}$ intersect at P. If $P F=\sqrt{5}$, find $A P$.
25. In acute angled $\triangle A B C m \angle B A C=60^{\circ}$. Circumradius of $\triangle A B C=$ $5 \sqrt{3}$. Let H be the orthocenter and O be circumcenter of $\triangle A B C$. Let $[A B C]$ be area of $\triangle A B C$ and $[H B C]$ be area of $\triangle H B C$. Find $\frac{2}{\sqrt{3}}([A B C]-[H B C])=$

26. In $\triangle A B C, m \angle B A C=90^{\circ} . E$ is on $\overline{B C}$ such that $A B=A E$. If $A E=7$ and $B E=\frac{98}{\sqrt{193}}$, find $A C$.
27. Given that $x^{2}+x y-2 y^{2}+8 x+a y-9$ gets factorised into two linear polynomials with integer coefficients. Find the sum of all possible values of a.
28. Roots of $x^{3}-9 x^{2}-37 x+165=0$, in increasing order, form first 3 terms of an Arithmatic Progression (AP). $10 T$ is sum of first 10 terms of the same AP. Find T.
29. Given that k is positive real number.
$x+(1+k) y=0$
$(1-k) x+k y=1+k$
$(1+k) x+(12-k) y=-(1+k)$
Solve system of simultenous equations and find value of x and y. Report $29(y-x)$.
30. Given that $x^{2}-3 x+1=0$. Find the value of k if $x^{12}-7 k x^{6}+1=0$.
