AD 1

M Prakash Institute 19 January 2025
Each question carries five marks 10 am to 1 pm
Student Receipt number: Student Name:

XI Entrance Test 2 Paper Type AD

Chemistry

Scientific data:

Avogadro Number $= 6 \times 10^{23}$ per mole

 $\begin{array}{l} {\rm Atomic\ Number:\ H=1, Li=3, Be=4,\ B=5, C=6,\ N=7, O=8, Ne=10, Na=11, Mg=12,} \\ {\rm Al=13, P=15,\ S=16, Cl=17,\ K=19, Ca=20, Sc=21, Ti=22,\ V=23, Cr=24, Mn=25, Fe} \\ {\rm =26, Cu=29, Zn=30, Ga=31, Ge=32, Cd=48, In=49, Cs=55, Ba=56, Tl=81, Po=84} \\ {\rm Atomic\ Mass:\ H=1, Li=7, Be=9,\ B=11, C=12,\ N=14, O=16, Ne=20, Na=23, Mg=24,} \\ {\rm Al=27,\ K=39, Ca=40,\ S=32, P=31, Cl=35.5,\ K=39, Sc=45, Ti=48,\ V=51, Cr=52,} \\ {\rm Mn=55, Fe=56, Cu=63.5, Zn=65, Ga=70, Ge=72, Cd=112, In=115, Cs=133, Ba=137,} \\ {\rm Tl=204, Po=209} \end{array}$

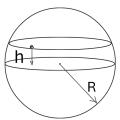
- **Q.1** The number of neon atoms present in 2×10^{-24} Kg sample of pure neon is atoms.
- **Q.2** Write the molar mass of any one of the chemical species which has molar mass equal to the other chemical species from the given list \Rightarrow CH₃COOH, NH₄NO₂, CO₃²⁻, SO₄²⁻, H₂CO₃, SO₃
- Q.3 The difference between the pH values of 0.01 M NaOH and 0.001 M HCl solution is
- **Q.4** What is the total number of moles of oxygen atoms present in 3 moles of aluminium dichromate salt?
- **Q.6** Last element of second series of transition element say (A) combines with second element of sixteenth group say (B), forming a compound having molecular formula A_xB_y . The value of $\left(\frac{\text{Molar Mass of }A_xB_y}{2}\right)$ is ———
- **Q.8** $\frac{2}{3}$ mol of copper is obtained by heating ——————— grams of Cu₂S ore in air while performing metallurgy of copper.
- Q.9 The minimum molar mass of a saturated open chain alcohol which can show two different structural isomeric alcohols is ———-
- Q.10 How many of the following can decolourise bromine water?
- 1) C_2H_4 2) C_4H_{10}
- 3) $C_{17}H_{35}COOH$
- 4) C₂H₂ 5) C₃H₄ 7) C₃H₈ 8) C₆H₁₄
- 6) $C_{15}H_{31}$ COOH 9) $C_{17}H_{31}$ COOH
- $10) C_5 H_8$ $11) C_5 H$
 - 11) C_5H_{10} 12) $C_{17}H_{33}COOH$

Physics

Use $q = 10 \ m/s^2$ wherever required.

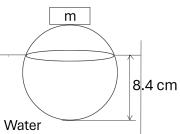
Q.11 Object A is thrown vertically upwards from the top of a tower with speed u m/sec at t=0. The top of the tower is 12u m from the ground. At the same time, object B is thrown vertically upwards from ground at speed ku m/sec. It is observed that object A and object B are at the same height from the ground at t=3 sec. Calculate k and **mark 10k as your answer**.

Q.12 Object A is thrown vertically upwards at $u \ m/sec$ speed at $t=0 \ sec$. Object B is dropped from the height of 200 meters at $t=0 \ sec$ with initial speed zero. Object C is dropped from the same height at $t=2 \ sec$ with initial speed zero. It is observed that object A and object B cross each other at $t=t_1 \ sec$. Object A and object C cross each other at $t=t_1+2 \ sec$. Calculate u in m/sec.


Q.13 Consider a circular horizontal track of length 200 meters. (i.e. the circumferrence of the circular track is 200 meters.) Ajay starts running at a constant acceleration of $a \ m/sec^2$ from the northmost point of the track in the anticlockwise direction, i.e. north-west-south-east at t=0. Akshay and Mohan start running at t=0 from the southmost point. Akshay starts running in clockwise direction. Mohan starts running in anticlockwise direction.

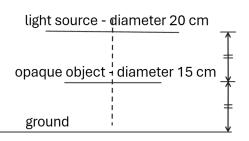
Akshay starts running from zero speed at constant acceleration of $ka \ m/sec^2$ for 2 seconds and then decelerates at $ka \ m/sec^2$ for two seconds. He continues running in the same pattern. Mohan starts running from zero speed at constant acceleration of $\frac{3ka}{2} \ m/sec^2$ for 2 seconds and then decelerates at $\frac{3ka}{2} \ m/sec^2$ for two seconds. He continues running in the same pattern. Ajay crosses Akshay at $t=10 \ sec$. Ajay catches Mohan at $t=20 \ sec$. Calculate k and mark 4k as your answer.

Q.14 Refer to the diagram.


The problem is based on the following formula:

Consider a sphere of radius R. It is cut by two parallel planes. First plane is passing through the centre of the sphere. The second plane is at a distance of h from the first plane. The volume of the cut section of width h is given $V = \pi (R^2 h - \frac{h^3}{3})$

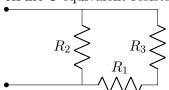
Now the problem:

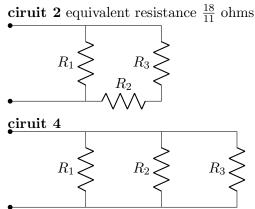

Take the value of π as $\frac{22}{7}$. A spherical ball of radius 6.3 cm made of wood (density 0.5 gm/cc) is floating in water (density 1 gm/cc). A solid of mass m gm is kept on the top of the sphere carefully. It is observed that the depth of the portion of the wooden sphere inside the water is 8.4 cm. Calculate m in grams. Calculate $\frac{m}{10}$ and mark the integer part of $\frac{m}{10}$ as your answer. E.g. if your answer is m=123.456 gm or m=128.898 gm, then mark the answer as 12.

Q.15 There are four points A, B, C, D on a straight line in this order from left to right. Various distances are $AB = \frac{d}{2} cm$, $BC = \frac{3d}{2} cm$, CD = 4d cm. There are static point charges at A, C, D. Charge at A is $+Q_1$ coulombs. Charge at C is $+Q_2$ coulombs. Charge at D is $+Q_3$ coulombs. The net static force on $+Q_2$ due to $+Q_1$ and $+Q_3$ is zero. Now, the charge at A is moved to point A. The charge at A is replaced by A0 coulombs. The net static force on A1 are A2 due to A3 is zero. Calculate A3 is zero. Calculate A3 and A4 are A5 as your answer.


Q.16 Refer to the diagram.

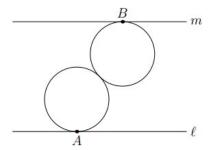
An extended light source in the form of a circular disc of diameter 20 cm is at some distance from ground and horizontal. An opaque object in the form of a circular disc of diameter 15 cm is kept exactly midway between the light source and the ground. The light source and the opaque object are coaxial. The object is horizontal. A penumbra (in the shape of a ring with inner and outer circles) is formed on the ground. Calculate the outer diameter of the penumbra in centimeters.




Q.17 Refer to the diagram. The equivalent resistance of circuit 4 has two possible values, say R_4 and R_5 where $R_4 > R_5$. $R_4 - R_5 = \frac{p}{q}$ where p, q are prime numbers. Write the product pq as your answer.

 ${\bf ciruit}~{\bf 1}$ equivalent resistance 11 ohms

ciruit 3 equivalent resistance $\frac{24}{11}$ ohms


Q.18 A solid block of metal of mass $50 \ gm$ (specific heat $0.3 \ cal/gm^{\circ}C$) at temperature $460^{\circ}C$, $250 \ gm$ of ice at $0^{\circ}C$ and $x \ gm$ of steam at $100^{\circ}C$ are kept in an insulated container. After some time, equilibrium temperature of 60° is reached. Calculate x. Assume the following values: Latent heat of fusion of water: $80 \ cal/gm$, latent heat of vaporisation of water $= 540 \ cal/gm$, specific heat of water $= 1 \ cal/gm^{\circ}C$.

Q.19 A bullet of mass m gm is fired vertically upwards with initial speed of $400 \ m/sec$ from point A on the ground at t=0. At the same time, a wooden ball of mass $370 \ gm$ is dropped from a cliff which is 400 meters directly above point A. (Initial speed of the ball is zero.) The bullet hits the wooden ball and gets stuck in the ball. The direction of movement of the bullet and the wooden ball after collision is vertically upwards. The height of the bullet and ball from ground at $t=12 \ sec$ is $10 \ meters$. Calculate m.

Q.20 An object is kept in front of a screen. A converging lens is kept between them so that a sharp image of the object is obtained on the screen. Image is of the same size as that of object. Now, the screen is moved towards the lens by $10 \ cm$. The object is moved away from the lens by $30 \ cm$ so that a sharp image is obtained on the screen. Calculate the focal length of the lens in centimeters.

Maths

- **Q.21** Let ABCD be a trapezoid with $AB\|CD, AB = 20, CD = 24$, and area 880. Compute the area of the triangle formed by the midpoints of AB, AC, and BD.
- **Q.22** Points A and B lie on a circle centered at O such that AB = 14. The perpendicular bisector of AB intersects $\odot O$ at point C such that O lies in the interior of $\triangle ABC$ and $AC = 35\sqrt{2}$. Lines BO and AC intersect at point D. Let λ be the ratio of the area of $\triangle DOC$ to the area of $\triangle DBC$. Report 98λ .
- **Q.23** Let ω be the circle inscribed in regular hexagon ABCDEF with side length 14, and let the midpoint of side BC be M. Segment AM intersects ω at point $P \neq M$. Compute the length of AP. Report AP^2
- **Q.24** The figure below shows two parallel lines, ℓ and m, that are distance 35 apart:

A circle is tangent to line ℓ at point A. Another circle is tangent to line m at point B. The two circles are congruent and tangent to each other as shown. The distance between A and B is 37. Let R be the radius of each circle such that N < R < N+1 where N is natural number. Report the largest value of N.

Q.25 If a, b, c, d, and e are constants such that every x > 0 satisfies

$$\frac{5x^4 - 8x^3 + 2x^2 + 4x + 7}{(x+2)^4} = a + \frac{b}{x+2} + \frac{c}{(x+2)^2} + \frac{d}{(x+2)^3} + \frac{e}{(x+2)^4},$$

then what is the value of a + b + c + d + e?

- **Q.26** Sum of all real solutions of $\sqrt{x + 14 8\sqrt{x 2}} + \sqrt{x + 23 10\sqrt{x 2}} = 3$. is
- **Q.27** If $a = (\sqrt{3} + \sqrt{2})^{-3}$ and $b = (\sqrt{3} \sqrt{2})^{-3}$, find the value of $(a+1)^{-1} + (b+1)^{-1}$
- **Q.28** ABC is a right angled triangle with $\angle B = 90^{\circ}.M$ is the midpoint of AC and $BM = \frac{\sqrt{193}}{2}$. Sum of the lengths of the other two sides AB and BC is 19. Find the area of the triangle.
- **Q.29** A circle is drawn through points A(4,6), B(6,2), C(-3,5). D is diametrically opposite point of C on the circle. AD is distance between A and D. Find AD^2
- **Q.30** Let S_n denote the sum of first n terms of an arithmetic progression. If $S_{20} = 790$ and $S_{10} = 145$, then sum of the digits of $S_{15} S_5$ is: