M Prakash Institute 24 November 2024 Each question carries five marks 10 am to 1 pm

XI Entrance Test 1 Paper Type AD

Chemistry

Scientific data:

Atomic Number: H = 1, Li = 3, Be = 4, B = 5, C = 6, N = 7, O = 8, Na = 11, Mg = 12, Al = 13, S = 16, Cl = 17, K = 19, Ca = 20, Sc = 21, Ti = 22, V = 23, Cr = 24, Mn = 25, Fe = 26, Cu = 29, Ga = 31, Ge = 32, In = 49, Cs = 55, Ba = 56, Tl = 81

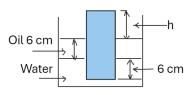
Atomic Mass : H = 1, Li = 7, Be = 9, B = 11, C = 12, N = 14, O = 16, Na = 23, Mg = 24, Al = 27, K = 39, Ca = 40, S = 32, Cl = 35.5, K = 39, Sc = 45, Ti = 48, V = 51, Cr = 52, Mn = 55, Fe = 56, Cu = 63.5, Ga = 70, Ge = 72, In = 115, Cs = 133, Ba = 137, Tl = 204 **Avogadro Number** $= 6 \times 10^{23}$ per mole

- **Q.1** The total numbers of atoms present in 40 grams of CH_4 is $----\times 10^{23}$.
- Q.2 How many of the followings are equal in their number of moles?
- (i) 22 grams CO₂ gas
- (ii) 14 grams CO gas
- (iii) 1.5×10^{23} O₃ molecules
- (iv) 10 grams CaCO₃
- (v) $19.6 \text{ grams } H_2SO_4$
- (vi) 30 grams $C_3H_6O_3$
- (vii) 15 grams C₂H₆
- (viii) 54 grams C₂H₂O₄
- (ix) 53 grams Na₂CO₃
- (x) 49 grams H_3PO_4
- (xi) 1 grams H₂ gas
- (xii) 56 grams NH₄NO₃
- Q.3 The maximum amount of oxygen gas produced on complete electrolysis of 2.7 kg of acidified water is —— mol of oxygen gas.
- **Q.4** The amount of ammonium nitrate is required to prepare 4 lit aqueous solution having molarity 0.05 molar is —— grams.
- **Q.5** An element having atomic number 95 is present in group number 'X' and period number 'Y' in the modern periodic table. The value of (X + Y) is —
- **Q.6** Write the sum of number of protons present in the nucleus of largest and smallest elements from the following list:

- Q.8 In Alumino Thermite process, the amount of iron oxide reacts with 27 g of aluminium is ——- grams
- Q.9 Minimum molecular mass of an open chain alkene showing structural isomerism is —
- Q.10 The difference in the molar mass of diethyl ketone and acetone is ———-.

Physics

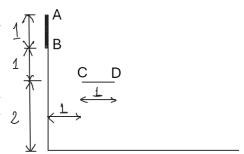
Use $q = 10 \ m/s^2$ wherever required.


Q.11 Object A is thrown vertically upwards with speed of $\frac{7v}{6}$ m/sec at time t = 0 sec. Object B is thrown vertically upwards with speed of v m/sec at time t = 1 sec. Both objects start from the same ground level. At t = 6 sec, both objects are travelling upwards and the distance between them is 65 m. Calculate v.

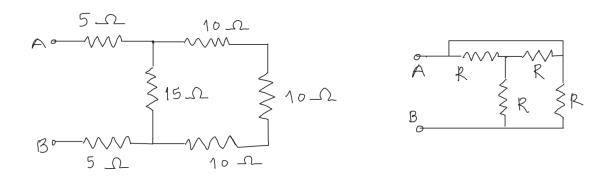
Q.12 Object A is thrown vertically upwards at 2v m/sec speed at t=0 sec. Object B is thrown vertically upwards at speed v m/sec at t=10 sec. Both objects start from the same ground level. Object A is vertically above object B at a distance of 250 meters at t=15 sec. Object A is coming down and object B is going up. Calculate v.

Q.13 Consider a circular horizontal track of length 200 meters. (i.e. the circumferrence of the circular track is 200 meters.) Ajay starts running at a constant acceleration of $a \ m/sec^2$ from the northmost point of the track in the anticlockwise direction, i.e. north-west-south-east at t=0. Akshay and Mohan start running at constant speed of $u \ m/sec$ at t=0 from the southmost point. Akshay starts running in clokcwise direction. Mohan starts running in anticlockwise direction. Ajay crosses Akshay at $t=10 \ sec$. Ajay catches Mohan at $t=20 \ sec$. Calculate Ajay's acceleration a and mark 15a as your answer.

Q.14 Refer to the diagram.


There is a container. There is a layer of water (density $1 \ gm/cc$) at the bottom. There is a layer of oil of density $0.9 \ gm/cc$ of height $6 \ cm$ above water. A cylindrical solid of material of density $0.6 \ gm/cc$ is floating as shown. The height of the portion of the solid in water is $6 \ cm$. The height of the portion of the solid in air is $h \ cm$. Calculate h and write 10h as your answer.

Q.15 There are four points A, B, C, D on a straight line in this order from left to right. Various distances are AB = 3 cm, BC = 1 cm, CD = x cm. There are static point charges at A, B, C. Charge at A is $+Q_1$ coulombs. Charge at B is $+Q_2$ coulombs. Charge at C is $+Q_3$ coulombs. The net static force on $+Q_2$ due to $+Q_1$ and $+Q_3$ is zero. Now, the charge at C is replaced by a point static charge of $-Q_1$ coulombs. Charge at C is moved to point C. The net static force on C0 due to C1 and C2 due to C3 is zero. Calculate C3 and mark C4 as your answer.


Q.16 Refer to the diagram.

AB is a light source. B is at a height of 3 meters from ground. AB=1 meter. CD is a horizontal opaque object. Horizontal distance of C from the vertcal wall is 1 meter. CD=1 meter. Height of CD from ground is 2 meters. A penumbra and an umbra is formed on the horizontal ground. The ratio of lengths of penumbra and umbra is k. Write 10k as your answer.

AD 3

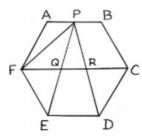
Q.17 Refer to the diagram. The equivalent resistances of the two circuits between points A and B are same. Calculate R -and mark $\frac{3R}{2}$ as your answer.

Q.18 A solid block of metal of mass x gm (specific heat 0.3 $cal/gm^{\circ}C$) at temperature $460^{\circ}C$, 250 gm of ice at $0^{\circ}C$ and 50 gm of steam at $100^{\circ}C$ are kept in an insulated container. After some time, equilibrium temperature of 60° is reached. Calculate x. Assume the following values: Latent heat of fusion of water: 80 cal/gm, latent heat of vaporisation of water = 540 cal/gm, specific heat of water = 1 $cal/gm^{\circ}C$.

Q.19 A bullet of mass 30 gm is fired vertically upwards with initial speed of 400 m/sec from point A on the ground at t=0. At the same time, a wooden ball of mass 370 gm is dropped from a cliff which is 400 meters directly above point A. (Initial speed of the ball is zero.) The bullet hits the wooden ball and gets stuck in the ball. What will be the height of the bullet and ball from ground at t=12 sec?

Q.20 An object is kept in front of a screen. A converging lens is kept between them so that a sharp image of the object is obtained on the screen. Distance between the object and the lens is 30 cm. Focal length of the lens is 15 cm. Now, the screen is moved away from the lens by 20 cm. By what distance should the lens be shifted from its original position so that a sharp reduced image is obtained on the screen?

Maths


Q.21 Let ABCD be a quadrilateral with coordinates (2,2), (10,2), (12,0), and (0,0). This quadrilateral is inscribed in a circle whose area is $K\pi$. Find K

Q.22 Let ABCD and DEFG be two rectangles so that the point E lies on the side AD, the point G lies on the side CD and the point F is the incenter of $\triangle ABC$. What is the ratio of the area of ABCD and the area of DEFG?

AD 4

Q.23 In the figure, ABCDEF is a regular hexagon and P is the midpoint of AB. Find the ratio $\frac{Area(DEQR)}{Area(EPO)}$.

Q.24 Suppose that a, b, c and d are positive integers that satisfy the equations

$$ab + cd = 38$$
, $ac + bd = 34$, $ad + bc = 43$.

What is the value of a + b + c + d?

Q.25 Scalene triangle ABC is reflected through its own centroid G, the image being triangle A'B'C'. If AB=2BC and the area of triangle A'B'C' is 72, compute the area of the hexagonal region common to both triangle ABC and triangle A'B'C'. (Note: the centroid of a triangle is the intersection of its medians.)

Q.26 Consider a convex quadrilateral ABCD. Let rays BA and CD intersect at E, rays DA and CB intersect at F, and the diagonals AC and BD intersect at G. It is given that the triangles DBF and DBE have the same area. Given that the area of triangle ABD is 4 and the area of triangle CBD is 6, If the area of triangle EFG is α . Report $\frac{\alpha}{10}$

Q.27 The first term of an arithmetic progression is 2, and the common difference is d. If the sum of the squares of the first 5 terms is 5610, find positive value of d.

Q.28 Find k if $x^6 + 3x^5 + 12x^4 + 19x^3 + 36x^2 + 27x + k$ is perfect cube of a polynomial.

Q.29 The expression n! denotes the product $1 \cdot 2 \cdot 3 \cdots n$ and is read as n factorial. For example, $5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$. The product (2!)(3!)(4!)(5!)(6!)(7!)(8!)(9!)(10!)(11!)(12!) can be written in the form $M^2(N!)$, where M, N are positive integers. Find smallest suitable value of N.

Q.30 Find the positive integer n such that

$$\frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18} + \frac{1}{24} + \frac{1}{42} + \frac{1}{n} = 1$$